M3NAS: Multi-Scale and Multi-Level Memory-Efficient Neural Architecture Search for Low-Dose CT Denoising

Lowering the radiation dose in computed tomography (CT) can greatly reduce the potential risk to public health. However, the reconstructed images from dose-reduced CT or low-dose CT (LDCT) suffer from severe noise which compromises the subsequent diagnosis and analysis. Recently, convolutional neura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2023-03, Vol.42 (3), p.1-1
Hauptverfasser: Lu, Zexin, Xia, Wenjun, Huang, Yongqiang, Hou, Mingzheng, Chen, Hu, Zhou, Jiliu, Shan, Hongming, Zhang, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 3
container_start_page 1
container_title IEEE transactions on medical imaging
container_volume 42
creator Lu, Zexin
Xia, Wenjun
Huang, Yongqiang
Hou, Mingzheng
Chen, Hu
Zhou, Jiliu
Shan, Hongming
Zhang, Yi
description Lowering the radiation dose in computed tomography (CT) can greatly reduce the potential risk to public health. However, the reconstructed images from dose-reduced CT or low-dose CT (LDCT) suffer from severe noise which compromises the subsequent diagnosis and analysis. Recently, convolutional neural networks have achieved promising results in removing noise from LDCT images. The network architectures that are used are either handcrafted or built on top of conventional networks such as ResNet and U-Net. Recent advances in neural network architecture search (NAS) have shown that the network architecture has a dramatic effect on the model performance. This indicates that current network architectures for LDCT may be suboptimal. Therefore, in this paper, we make the first attempt to apply NAS to LDCT and propose a multi-scale and multi-level memory-efficient NAS for LDCT denoising, termed M 3 NAS. On the one hand, the proposed M 3 NAS fuses features extracted by different scale cells to capture multi-scale image structural details. On the other hand, the proposed M 3 NAS can search a hybrid cell- and network-level structure for better performance. In addition, M 3 NAS can effectively reduce the number of model parameters and increase the speed of inference. Extensive experimental results on two different datasets demonstrate that the proposed M 3 NAS can achieve better performance and fewer parameters than several state-of-the-art methods. In addition, we also validate the effectiveness of the multi-scale and multi-level architecture for LDCT denoising, and present further analysis for different configurations of super-net.
doi_str_mv 10.1109/TMI.2022.3219286
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2731717496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9936653</ieee_id><sourcerecordid>2781842333</sourcerecordid><originalsourceid>FETCH-LOGICAL-i236t-2dfba390e8416e1f4a66d74051188620ee630a4bc94822a814cb65d3315b7afe3</originalsourceid><addsrcrecordid>eNpdjs1LwzAchoMoOKd3wUvAi5fOfDVNvI1tfkA7D5vgraTtry6ja2bSKvvvLWwn38vLAw8vL0K3lEwoJfpxnb1NGGFswhnVTMkzNKJxrCIWi89zNCIsUREhkl2iqxC2hFAREz1Cm4wvp6snnPVNZ6NVaRrApq1OnMIPNDiDnfOHaFHXtrTQdngJvTcNnvpyYzsou94DXoEZENfO49T9RnMXAM_WeA6ts8G2X9foojZNgJtTj9HH82I9e43S95e32TSNLOOyi1hVF4ZrAkpQCbQWRsoqESSmVCnJCIDkxIii1EIxZhQVZSHjinMaF4mpgY_Rw3F37913D6HLdzaU0DSmBdeHnCWcJjQRWg7q_T9163rfDu8GS1ElGB8yRndHywJAvvd2Z_wh15pLGXP-B-yMblk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781842333</pqid></control><display><type>article</type><title>M3NAS: Multi-Scale and Multi-Level Memory-Efficient Neural Architecture Search for Low-Dose CT Denoising</title><source>IEEE</source><creator>Lu, Zexin ; Xia, Wenjun ; Huang, Yongqiang ; Hou, Mingzheng ; Chen, Hu ; Zhou, Jiliu ; Shan, Hongming ; Zhang, Yi</creator><creatorcontrib>Lu, Zexin ; Xia, Wenjun ; Huang, Yongqiang ; Hou, Mingzheng ; Chen, Hu ; Zhou, Jiliu ; Shan, Hongming ; Zhang, Yi</creatorcontrib><description>Lowering the radiation dose in computed tomography (CT) can greatly reduce the potential risk to public health. However, the reconstructed images from dose-reduced CT or low-dose CT (LDCT) suffer from severe noise which compromises the subsequent diagnosis and analysis. Recently, convolutional neural networks have achieved promising results in removing noise from LDCT images. The network architectures that are used are either handcrafted or built on top of conventional networks such as ResNet and U-Net. Recent advances in neural network architecture search (NAS) have shown that the network architecture has a dramatic effect on the model performance. This indicates that current network architectures for LDCT may be suboptimal. Therefore, in this paper, we make the first attempt to apply NAS to LDCT and propose a multi-scale and multi-level memory-efficient NAS for LDCT denoising, termed M 3 NAS. On the one hand, the proposed M 3 NAS fuses features extracted by different scale cells to capture multi-scale image structural details. On the other hand, the proposed M 3 NAS can search a hybrid cell- and network-level structure for better performance. In addition, M 3 NAS can effectively reduce the number of model parameters and increase the speed of inference. Extensive experimental results on two different datasets demonstrate that the proposed M 3 NAS can achieve better performance and fewer parameters than several state-of-the-art methods. In addition, we also validate the effectiveness of the multi-scale and multi-level architecture for LDCT denoising, and present further analysis for different configurations of super-net.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2022.3219286</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Computed tomography ; Computer architecture ; Deep Learning ; Denoising ; Feature extraction ; Health risks ; Image reconstruction ; Low-dose CT ; Mathematical models ; Medical imaging ; Network architecture ; Neural Architecture Search ; Neural networks ; Noise reduction ; Parameters ; Public health ; Radiation ; Radiation dosage ; Searching ; Task analysis</subject><ispartof>IEEE transactions on medical imaging, 2023-03, Vol.42 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7201-2092 ; 0000-0002-0428-1490 ; 0000-0002-0604-3197 ; 0000-0001-9300-6572</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9936653$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9936653$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Zexin</creatorcontrib><creatorcontrib>Xia, Wenjun</creatorcontrib><creatorcontrib>Huang, Yongqiang</creatorcontrib><creatorcontrib>Hou, Mingzheng</creatorcontrib><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Zhou, Jiliu</creatorcontrib><creatorcontrib>Shan, Hongming</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><title>M3NAS: Multi-Scale and Multi-Level Memory-Efficient Neural Architecture Search for Low-Dose CT Denoising</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><description>Lowering the radiation dose in computed tomography (CT) can greatly reduce the potential risk to public health. However, the reconstructed images from dose-reduced CT or low-dose CT (LDCT) suffer from severe noise which compromises the subsequent diagnosis and analysis. Recently, convolutional neural networks have achieved promising results in removing noise from LDCT images. The network architectures that are used are either handcrafted or built on top of conventional networks such as ResNet and U-Net. Recent advances in neural network architecture search (NAS) have shown that the network architecture has a dramatic effect on the model performance. This indicates that current network architectures for LDCT may be suboptimal. Therefore, in this paper, we make the first attempt to apply NAS to LDCT and propose a multi-scale and multi-level memory-efficient NAS for LDCT denoising, termed M 3 NAS. On the one hand, the proposed M 3 NAS fuses features extracted by different scale cells to capture multi-scale image structural details. On the other hand, the proposed M 3 NAS can search a hybrid cell- and network-level structure for better performance. In addition, M 3 NAS can effectively reduce the number of model parameters and increase the speed of inference. Extensive experimental results on two different datasets demonstrate that the proposed M 3 NAS can achieve better performance and fewer parameters than several state-of-the-art methods. In addition, we also validate the effectiveness of the multi-scale and multi-level architecture for LDCT denoising, and present further analysis for different configurations of super-net.</description><subject>Artificial neural networks</subject><subject>Computed tomography</subject><subject>Computer architecture</subject><subject>Deep Learning</subject><subject>Denoising</subject><subject>Feature extraction</subject><subject>Health risks</subject><subject>Image reconstruction</subject><subject>Low-dose CT</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Network architecture</subject><subject>Neural Architecture Search</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Parameters</subject><subject>Public health</subject><subject>Radiation</subject><subject>Radiation dosage</subject><subject>Searching</subject><subject>Task analysis</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdjs1LwzAchoMoOKd3wUvAi5fOfDVNvI1tfkA7D5vgraTtry6ja2bSKvvvLWwn38vLAw8vL0K3lEwoJfpxnb1NGGFswhnVTMkzNKJxrCIWi89zNCIsUREhkl2iqxC2hFAREz1Cm4wvp6snnPVNZ6NVaRrApq1OnMIPNDiDnfOHaFHXtrTQdngJvTcNnvpyYzsou94DXoEZENfO49T9RnMXAM_WeA6ts8G2X9foojZNgJtTj9HH82I9e43S95e32TSNLOOyi1hVF4ZrAkpQCbQWRsoqESSmVCnJCIDkxIii1EIxZhQVZSHjinMaF4mpgY_Rw3F37913D6HLdzaU0DSmBdeHnCWcJjQRWg7q_T9163rfDu8GS1ElGB8yRndHywJAvvd2Z_wh15pLGXP-B-yMblk</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Lu, Zexin</creator><creator>Xia, Wenjun</creator><creator>Huang, Yongqiang</creator><creator>Hou, Mingzheng</creator><creator>Chen, Hu</creator><creator>Zhou, Jiliu</creator><creator>Shan, Hongming</creator><creator>Zhang, Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7201-2092</orcidid><orcidid>https://orcid.org/0000-0002-0428-1490</orcidid><orcidid>https://orcid.org/0000-0002-0604-3197</orcidid><orcidid>https://orcid.org/0000-0001-9300-6572</orcidid></search><sort><creationdate>20230301</creationdate><title>M3NAS: Multi-Scale and Multi-Level Memory-Efficient Neural Architecture Search for Low-Dose CT Denoising</title><author>Lu, Zexin ; Xia, Wenjun ; Huang, Yongqiang ; Hou, Mingzheng ; Chen, Hu ; Zhou, Jiliu ; Shan, Hongming ; Zhang, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i236t-2dfba390e8416e1f4a66d74051188620ee630a4bc94822a814cb65d3315b7afe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Computed tomography</topic><topic>Computer architecture</topic><topic>Deep Learning</topic><topic>Denoising</topic><topic>Feature extraction</topic><topic>Health risks</topic><topic>Image reconstruction</topic><topic>Low-dose CT</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Network architecture</topic><topic>Neural Architecture Search</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Parameters</topic><topic>Public health</topic><topic>Radiation</topic><topic>Radiation dosage</topic><topic>Searching</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Zexin</creatorcontrib><creatorcontrib>Xia, Wenjun</creatorcontrib><creatorcontrib>Huang, Yongqiang</creatorcontrib><creatorcontrib>Hou, Mingzheng</creatorcontrib><creatorcontrib>Chen, Hu</creatorcontrib><creatorcontrib>Zhou, Jiliu</creatorcontrib><creatorcontrib>Shan, Hongming</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Zexin</au><au>Xia, Wenjun</au><au>Huang, Yongqiang</au><au>Hou, Mingzheng</au><au>Chen, Hu</au><au>Zhou, Jiliu</au><au>Shan, Hongming</au><au>Zhang, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>M3NAS: Multi-Scale and Multi-Level Memory-Efficient Neural Architecture Search for Low-Dose CT Denoising</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>42</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Lowering the radiation dose in computed tomography (CT) can greatly reduce the potential risk to public health. However, the reconstructed images from dose-reduced CT or low-dose CT (LDCT) suffer from severe noise which compromises the subsequent diagnosis and analysis. Recently, convolutional neural networks have achieved promising results in removing noise from LDCT images. The network architectures that are used are either handcrafted or built on top of conventional networks such as ResNet and U-Net. Recent advances in neural network architecture search (NAS) have shown that the network architecture has a dramatic effect on the model performance. This indicates that current network architectures for LDCT may be suboptimal. Therefore, in this paper, we make the first attempt to apply NAS to LDCT and propose a multi-scale and multi-level memory-efficient NAS for LDCT denoising, termed M 3 NAS. On the one hand, the proposed M 3 NAS fuses features extracted by different scale cells to capture multi-scale image structural details. On the other hand, the proposed M 3 NAS can search a hybrid cell- and network-level structure for better performance. In addition, M 3 NAS can effectively reduce the number of model parameters and increase the speed of inference. Extensive experimental results on two different datasets demonstrate that the proposed M 3 NAS can achieve better performance and fewer parameters than several state-of-the-art methods. In addition, we also validate the effectiveness of the multi-scale and multi-level architecture for LDCT denoising, and present further analysis for different configurations of super-net.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMI.2022.3219286</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7201-2092</orcidid><orcidid>https://orcid.org/0000-0002-0428-1490</orcidid><orcidid>https://orcid.org/0000-0002-0604-3197</orcidid><orcidid>https://orcid.org/0000-0001-9300-6572</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2023-03, Vol.42 (3), p.1-1
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_2731717496
source IEEE
subjects Artificial neural networks
Computed tomography
Computer architecture
Deep Learning
Denoising
Feature extraction
Health risks
Image reconstruction
Low-dose CT
Mathematical models
Medical imaging
Network architecture
Neural Architecture Search
Neural networks
Noise reduction
Parameters
Public health
Radiation
Radiation dosage
Searching
Task analysis
title M3NAS: Multi-Scale and Multi-Level Memory-Efficient Neural Architecture Search for Low-Dose CT Denoising
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A47%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M3NAS:%20Multi-Scale%20and%20Multi-Level%20Memory-Efficient%20Neural%20Architecture%20Search%20for%20Low-Dose%20CT%20Denoising&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Lu,%20Zexin&rft.date=2023-03-01&rft.volume=42&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2022.3219286&rft_dat=%3Cproquest_RIE%3E2781842333%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781842333&rft_id=info:pmid/&rft_ieee_id=9936653&rfr_iscdi=true