Oxygen Plasma-Mediated Microstructured Hydrocarbon Membrane for Improving Interface Adhesion and Mass Transport in Polymer Electrolyte Fuel Cells

Developing a method for fabricating high-efficient and low-cost fuel cells is imperative for commercializing polymer electrolyte membrane (PEM) fuel cells (FCs). This study introduces a mechanical and chemical modification technique using the oxygen plasma irradiation process for hydrocarbon-based (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-11, Vol.14 (45), p.50956-50965
Hauptverfasser: Choi, Jiwoo, Kim, Dongsu, Chae, Ji Eon, Lee, Sanghyeok, Kim, Sang Moon, Yoo, Sung Jong, Kim, Hyoung-Juhn, Choi, Mansoo, Jang, Segeun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50965
container_issue 45
container_start_page 50956
container_title ACS applied materials & interfaces
container_volume 14
creator Choi, Jiwoo
Kim, Dongsu
Chae, Ji Eon
Lee, Sanghyeok
Kim, Sang Moon
Yoo, Sung Jong
Kim, Hyoung-Juhn
Choi, Mansoo
Jang, Segeun
description Developing a method for fabricating high-efficient and low-cost fuel cells is imperative for commercializing polymer electrolyte membrane (PEM) fuel cells (FCs). This study introduces a mechanical and chemical modification technique using the oxygen plasma irradiation process for hydrocarbon-based (HC) PEM. The oxygen functional groups were introduced on the HC-PEM surface through the plasma process in the controlled area, and microsized structures were formed. The modified membrane was incorporated with plasma-treated electrodes, improving the adhesive force between the HC-PEM and the electrode. The decal transfer was enabled at low temperatures and pressures, and the interfacial resistance in the membrane–electrode assembly (MEA) was reduced. Furthermore, the micropillar structured electrode configuration significantly reduced the oxygen transport resistance in the MEA. Various diagnostic techniques were conducted to find out the effects of the membrane surface modification, interface adhesion, and mass transport, such as physical characterizations, mechanical stress tests, and diverse electrochemical measurements.
doi_str_mv 10.1021/acsami.2c15122
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2731717475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731717475</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-5016734b90316781a2eabf0a5d3f89e4912e4bad981ca39a9bc0d3eeeae497923</originalsourceid><addsrcrecordid>eNp1kMtOwkAUhidGExHdup6lMSnOpaXtkhAQEggucN2cTk-xpO3gzNTYx_CNHVLiztW5fef2E_LI2YQzwV9AWWiqiVA84kJckRFPwzBIRCSu__wwvCV31h4Zm0rBohH52X33B2zpWw22gWCLRQUOC7qtlNHWmU65zvh41RdGKzC5bukWm9xAi7TUhq6bk9FfVXug69ahKUEhnRUfaCtPQusngbV073l70sbRyu_Sdd-goYsalTM-cEiXHdZ0jnVt78lNCbXFh4sdk_flYj9fBZvd63o-2wQgWeyCiPFpLMM8ZdI7CQeBkJcMokKWSYphygWGORRpwhXIFNJcsUIiIvhanAo5Jk_DXH__Z4fWZU1llb_Af6Y7m4lY8pjHYRx5dDKgZ02swTI7maoB02ecZWfts0H77KK9b3geGnw-O-rOtP6T_-BfsqyJsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731717475</pqid></control><display><type>article</type><title>Oxygen Plasma-Mediated Microstructured Hydrocarbon Membrane for Improving Interface Adhesion and Mass Transport in Polymer Electrolyte Fuel Cells</title><source>ACS Publications</source><creator>Choi, Jiwoo ; Kim, Dongsu ; Chae, Ji Eon ; Lee, Sanghyeok ; Kim, Sang Moon ; Yoo, Sung Jong ; Kim, Hyoung-Juhn ; Choi, Mansoo ; Jang, Segeun</creator><creatorcontrib>Choi, Jiwoo ; Kim, Dongsu ; Chae, Ji Eon ; Lee, Sanghyeok ; Kim, Sang Moon ; Yoo, Sung Jong ; Kim, Hyoung-Juhn ; Choi, Mansoo ; Jang, Segeun</creatorcontrib><description>Developing a method for fabricating high-efficient and low-cost fuel cells is imperative for commercializing polymer electrolyte membrane (PEM) fuel cells (FCs). This study introduces a mechanical and chemical modification technique using the oxygen plasma irradiation process for hydrocarbon-based (HC) PEM. The oxygen functional groups were introduced on the HC-PEM surface through the plasma process in the controlled area, and microsized structures were formed. The modified membrane was incorporated with plasma-treated electrodes, improving the adhesive force between the HC-PEM and the electrode. The decal transfer was enabled at low temperatures and pressures, and the interfacial resistance in the membrane–electrode assembly (MEA) was reduced. Furthermore, the micropillar structured electrode configuration significantly reduced the oxygen transport resistance in the MEA. Various diagnostic techniques were conducted to find out the effects of the membrane surface modification, interface adhesion, and mass transport, such as physical characterizations, mechanical stress tests, and diverse electrochemical measurements.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c15122</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-11, Vol.14 (45), p.50956-50965</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-5016734b90316781a2eabf0a5d3f89e4912e4bad981ca39a9bc0d3eeeae497923</citedby><cites>FETCH-LOGICAL-a307t-5016734b90316781a2eabf0a5d3f89e4912e4bad981ca39a9bc0d3eeeae497923</cites><orcidid>0000-0003-3198-6899 ; 0000-0002-2311-2211 ; 0000-0001-8319-8400 ; 0000-0003-1556-0206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c15122$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c15122$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Choi, Jiwoo</creatorcontrib><creatorcontrib>Kim, Dongsu</creatorcontrib><creatorcontrib>Chae, Ji Eon</creatorcontrib><creatorcontrib>Lee, Sanghyeok</creatorcontrib><creatorcontrib>Kim, Sang Moon</creatorcontrib><creatorcontrib>Yoo, Sung Jong</creatorcontrib><creatorcontrib>Kim, Hyoung-Juhn</creatorcontrib><creatorcontrib>Choi, Mansoo</creatorcontrib><creatorcontrib>Jang, Segeun</creatorcontrib><title>Oxygen Plasma-Mediated Microstructured Hydrocarbon Membrane for Improving Interface Adhesion and Mass Transport in Polymer Electrolyte Fuel Cells</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Developing a method for fabricating high-efficient and low-cost fuel cells is imperative for commercializing polymer electrolyte membrane (PEM) fuel cells (FCs). This study introduces a mechanical and chemical modification technique using the oxygen plasma irradiation process for hydrocarbon-based (HC) PEM. The oxygen functional groups were introduced on the HC-PEM surface through the plasma process in the controlled area, and microsized structures were formed. The modified membrane was incorporated with plasma-treated electrodes, improving the adhesive force between the HC-PEM and the electrode. The decal transfer was enabled at low temperatures and pressures, and the interfacial resistance in the membrane–electrode assembly (MEA) was reduced. Furthermore, the micropillar structured electrode configuration significantly reduced the oxygen transport resistance in the MEA. Various diagnostic techniques were conducted to find out the effects of the membrane surface modification, interface adhesion, and mass transport, such as physical characterizations, mechanical stress tests, and diverse electrochemical measurements.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwkAUhidGExHdup6lMSnOpaXtkhAQEggucN2cTk-xpO3gzNTYx_CNHVLiztW5fef2E_LI2YQzwV9AWWiqiVA84kJckRFPwzBIRCSu__wwvCV31h4Zm0rBohH52X33B2zpWw22gWCLRQUOC7qtlNHWmU65zvh41RdGKzC5bukWm9xAi7TUhq6bk9FfVXug69ahKUEhnRUfaCtPQusngbV073l70sbRyu_Sdd-goYsalTM-cEiXHdZ0jnVt78lNCbXFh4sdk_flYj9fBZvd63o-2wQgWeyCiPFpLMM8ZdI7CQeBkJcMokKWSYphygWGORRpwhXIFNJcsUIiIvhanAo5Jk_DXH__Z4fWZU1llb_Af6Y7m4lY8pjHYRx5dDKgZ02swTI7maoB02ecZWfts0H77KK9b3geGnw-O-rOtP6T_-BfsqyJsQ</recordid><startdate>20221116</startdate><enddate>20221116</enddate><creator>Choi, Jiwoo</creator><creator>Kim, Dongsu</creator><creator>Chae, Ji Eon</creator><creator>Lee, Sanghyeok</creator><creator>Kim, Sang Moon</creator><creator>Yoo, Sung Jong</creator><creator>Kim, Hyoung-Juhn</creator><creator>Choi, Mansoo</creator><creator>Jang, Segeun</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3198-6899</orcidid><orcidid>https://orcid.org/0000-0002-2311-2211</orcidid><orcidid>https://orcid.org/0000-0001-8319-8400</orcidid><orcidid>https://orcid.org/0000-0003-1556-0206</orcidid></search><sort><creationdate>20221116</creationdate><title>Oxygen Plasma-Mediated Microstructured Hydrocarbon Membrane for Improving Interface Adhesion and Mass Transport in Polymer Electrolyte Fuel Cells</title><author>Choi, Jiwoo ; Kim, Dongsu ; Chae, Ji Eon ; Lee, Sanghyeok ; Kim, Sang Moon ; Yoo, Sung Jong ; Kim, Hyoung-Juhn ; Choi, Mansoo ; Jang, Segeun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-5016734b90316781a2eabf0a5d3f89e4912e4bad981ca39a9bc0d3eeeae497923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jiwoo</creatorcontrib><creatorcontrib>Kim, Dongsu</creatorcontrib><creatorcontrib>Chae, Ji Eon</creatorcontrib><creatorcontrib>Lee, Sanghyeok</creatorcontrib><creatorcontrib>Kim, Sang Moon</creatorcontrib><creatorcontrib>Yoo, Sung Jong</creatorcontrib><creatorcontrib>Kim, Hyoung-Juhn</creatorcontrib><creatorcontrib>Choi, Mansoo</creatorcontrib><creatorcontrib>Jang, Segeun</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jiwoo</au><au>Kim, Dongsu</au><au>Chae, Ji Eon</au><au>Lee, Sanghyeok</au><au>Kim, Sang Moon</au><au>Yoo, Sung Jong</au><au>Kim, Hyoung-Juhn</au><au>Choi, Mansoo</au><au>Jang, Segeun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Plasma-Mediated Microstructured Hydrocarbon Membrane for Improving Interface Adhesion and Mass Transport in Polymer Electrolyte Fuel Cells</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-11-16</date><risdate>2022</risdate><volume>14</volume><issue>45</issue><spage>50956</spage><epage>50965</epage><pages>50956-50965</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Developing a method for fabricating high-efficient and low-cost fuel cells is imperative for commercializing polymer electrolyte membrane (PEM) fuel cells (FCs). This study introduces a mechanical and chemical modification technique using the oxygen plasma irradiation process for hydrocarbon-based (HC) PEM. The oxygen functional groups were introduced on the HC-PEM surface through the plasma process in the controlled area, and microsized structures were formed. The modified membrane was incorporated with plasma-treated electrodes, improving the adhesive force between the HC-PEM and the electrode. The decal transfer was enabled at low temperatures and pressures, and the interfacial resistance in the membrane–electrode assembly (MEA) was reduced. Furthermore, the micropillar structured electrode configuration significantly reduced the oxygen transport resistance in the MEA. Various diagnostic techniques were conducted to find out the effects of the membrane surface modification, interface adhesion, and mass transport, such as physical characterizations, mechanical stress tests, and diverse electrochemical measurements.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c15122</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3198-6899</orcidid><orcidid>https://orcid.org/0000-0002-2311-2211</orcidid><orcidid>https://orcid.org/0000-0001-8319-8400</orcidid><orcidid>https://orcid.org/0000-0003-1556-0206</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-11, Vol.14 (45), p.50956-50965
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2731717475
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Oxygen Plasma-Mediated Microstructured Hydrocarbon Membrane for Improving Interface Adhesion and Mass Transport in Polymer Electrolyte Fuel Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Plasma-Mediated%20Microstructured%20Hydrocarbon%20Membrane%20for%20Improving%20Interface%20Adhesion%20and%20Mass%20Transport%20in%20Polymer%20Electrolyte%20Fuel%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Choi,%20Jiwoo&rft.date=2022-11-16&rft.volume=14&rft.issue=45&rft.spage=50956&rft.epage=50965&rft.pages=50956-50965&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c15122&rft_dat=%3Cproquest_cross%3E2731717475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731717475&rft_id=info:pmid/&rfr_iscdi=true