Oxygen Plasma-Mediated Microstructured Hydrocarbon Membrane for Improving Interface Adhesion and Mass Transport in Polymer Electrolyte Fuel Cells
Developing a method for fabricating high-efficient and low-cost fuel cells is imperative for commercializing polymer electrolyte membrane (PEM) fuel cells (FCs). This study introduces a mechanical and chemical modification technique using the oxygen plasma irradiation process for hydrocarbon-based (...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-11, Vol.14 (45), p.50956-50965 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50965 |
---|---|
container_issue | 45 |
container_start_page | 50956 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Choi, Jiwoo Kim, Dongsu Chae, Ji Eon Lee, Sanghyeok Kim, Sang Moon Yoo, Sung Jong Kim, Hyoung-Juhn Choi, Mansoo Jang, Segeun |
description | Developing a method for fabricating high-efficient and low-cost fuel cells is imperative for commercializing polymer electrolyte membrane (PEM) fuel cells (FCs). This study introduces a mechanical and chemical modification technique using the oxygen plasma irradiation process for hydrocarbon-based (HC) PEM. The oxygen functional groups were introduced on the HC-PEM surface through the plasma process in the controlled area, and microsized structures were formed. The modified membrane was incorporated with plasma-treated electrodes, improving the adhesive force between the HC-PEM and the electrode. The decal transfer was enabled at low temperatures and pressures, and the interfacial resistance in the membrane–electrode assembly (MEA) was reduced. Furthermore, the micropillar structured electrode configuration significantly reduced the oxygen transport resistance in the MEA. Various diagnostic techniques were conducted to find out the effects of the membrane surface modification, interface adhesion, and mass transport, such as physical characterizations, mechanical stress tests, and diverse electrochemical measurements. |
doi_str_mv | 10.1021/acsami.2c15122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2731717475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731717475</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-5016734b90316781a2eabf0a5d3f89e4912e4bad981ca39a9bc0d3eeeae497923</originalsourceid><addsrcrecordid>eNp1kMtOwkAUhidGExHdup6lMSnOpaXtkhAQEggucN2cTk-xpO3gzNTYx_CNHVLiztW5fef2E_LI2YQzwV9AWWiqiVA84kJckRFPwzBIRCSu__wwvCV31h4Zm0rBohH52X33B2zpWw22gWCLRQUOC7qtlNHWmU65zvh41RdGKzC5bukWm9xAi7TUhq6bk9FfVXug69ahKUEhnRUfaCtPQusngbV073l70sbRyu_Sdd-goYsalTM-cEiXHdZ0jnVt78lNCbXFh4sdk_flYj9fBZvd63o-2wQgWeyCiPFpLMM8ZdI7CQeBkJcMokKWSYphygWGORRpwhXIFNJcsUIiIvhanAo5Jk_DXH__Z4fWZU1llb_Af6Y7m4lY8pjHYRx5dDKgZ02swTI7maoB02ecZWfts0H77KK9b3geGnw-O-rOtP6T_-BfsqyJsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731717475</pqid></control><display><type>article</type><title>Oxygen Plasma-Mediated Microstructured Hydrocarbon Membrane for Improving Interface Adhesion and Mass Transport in Polymer Electrolyte Fuel Cells</title><source>ACS Publications</source><creator>Choi, Jiwoo ; Kim, Dongsu ; Chae, Ji Eon ; Lee, Sanghyeok ; Kim, Sang Moon ; Yoo, Sung Jong ; Kim, Hyoung-Juhn ; Choi, Mansoo ; Jang, Segeun</creator><creatorcontrib>Choi, Jiwoo ; Kim, Dongsu ; Chae, Ji Eon ; Lee, Sanghyeok ; Kim, Sang Moon ; Yoo, Sung Jong ; Kim, Hyoung-Juhn ; Choi, Mansoo ; Jang, Segeun</creatorcontrib><description>Developing a method for fabricating high-efficient and low-cost fuel cells is imperative for commercializing polymer electrolyte membrane (PEM) fuel cells (FCs). This study introduces a mechanical and chemical modification technique using the oxygen plasma irradiation process for hydrocarbon-based (HC) PEM. The oxygen functional groups were introduced on the HC-PEM surface through the plasma process in the controlled area, and microsized structures were formed. The modified membrane was incorporated with plasma-treated electrodes, improving the adhesive force between the HC-PEM and the electrode. The decal transfer was enabled at low temperatures and pressures, and the interfacial resistance in the membrane–electrode assembly (MEA) was reduced. Furthermore, the micropillar structured electrode configuration significantly reduced the oxygen transport resistance in the MEA. Various diagnostic techniques were conducted to find out the effects of the membrane surface modification, interface adhesion, and mass transport, such as physical characterizations, mechanical stress tests, and diverse electrochemical measurements.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c15122</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2022-11, Vol.14 (45), p.50956-50965</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-5016734b90316781a2eabf0a5d3f89e4912e4bad981ca39a9bc0d3eeeae497923</citedby><cites>FETCH-LOGICAL-a307t-5016734b90316781a2eabf0a5d3f89e4912e4bad981ca39a9bc0d3eeeae497923</cites><orcidid>0000-0003-3198-6899 ; 0000-0002-2311-2211 ; 0000-0001-8319-8400 ; 0000-0003-1556-0206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c15122$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c15122$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Choi, Jiwoo</creatorcontrib><creatorcontrib>Kim, Dongsu</creatorcontrib><creatorcontrib>Chae, Ji Eon</creatorcontrib><creatorcontrib>Lee, Sanghyeok</creatorcontrib><creatorcontrib>Kim, Sang Moon</creatorcontrib><creatorcontrib>Yoo, Sung Jong</creatorcontrib><creatorcontrib>Kim, Hyoung-Juhn</creatorcontrib><creatorcontrib>Choi, Mansoo</creatorcontrib><creatorcontrib>Jang, Segeun</creatorcontrib><title>Oxygen Plasma-Mediated Microstructured Hydrocarbon Membrane for Improving Interface Adhesion and Mass Transport in Polymer Electrolyte Fuel Cells</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Developing a method for fabricating high-efficient and low-cost fuel cells is imperative for commercializing polymer electrolyte membrane (PEM) fuel cells (FCs). This study introduces a mechanical and chemical modification technique using the oxygen plasma irradiation process for hydrocarbon-based (HC) PEM. The oxygen functional groups were introduced on the HC-PEM surface through the plasma process in the controlled area, and microsized structures were formed. The modified membrane was incorporated with plasma-treated electrodes, improving the adhesive force between the HC-PEM and the electrode. The decal transfer was enabled at low temperatures and pressures, and the interfacial resistance in the membrane–electrode assembly (MEA) was reduced. Furthermore, the micropillar structured electrode configuration significantly reduced the oxygen transport resistance in the MEA. Various diagnostic techniques were conducted to find out the effects of the membrane surface modification, interface adhesion, and mass transport, such as physical characterizations, mechanical stress tests, and diverse electrochemical measurements.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwkAUhidGExHdup6lMSnOpaXtkhAQEggucN2cTk-xpO3gzNTYx_CNHVLiztW5fef2E_LI2YQzwV9AWWiqiVA84kJckRFPwzBIRCSu__wwvCV31h4Zm0rBohH52X33B2zpWw22gWCLRQUOC7qtlNHWmU65zvh41RdGKzC5bukWm9xAi7TUhq6bk9FfVXug69ahKUEhnRUfaCtPQusngbV073l70sbRyu_Sdd-goYsalTM-cEiXHdZ0jnVt78lNCbXFh4sdk_flYj9fBZvd63o-2wQgWeyCiPFpLMM8ZdI7CQeBkJcMokKWSYphygWGORRpwhXIFNJcsUIiIvhanAo5Jk_DXH__Z4fWZU1llb_Af6Y7m4lY8pjHYRx5dDKgZ02swTI7maoB02ecZWfts0H77KK9b3geGnw-O-rOtP6T_-BfsqyJsQ</recordid><startdate>20221116</startdate><enddate>20221116</enddate><creator>Choi, Jiwoo</creator><creator>Kim, Dongsu</creator><creator>Chae, Ji Eon</creator><creator>Lee, Sanghyeok</creator><creator>Kim, Sang Moon</creator><creator>Yoo, Sung Jong</creator><creator>Kim, Hyoung-Juhn</creator><creator>Choi, Mansoo</creator><creator>Jang, Segeun</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3198-6899</orcidid><orcidid>https://orcid.org/0000-0002-2311-2211</orcidid><orcidid>https://orcid.org/0000-0001-8319-8400</orcidid><orcidid>https://orcid.org/0000-0003-1556-0206</orcidid></search><sort><creationdate>20221116</creationdate><title>Oxygen Plasma-Mediated Microstructured Hydrocarbon Membrane for Improving Interface Adhesion and Mass Transport in Polymer Electrolyte Fuel Cells</title><author>Choi, Jiwoo ; Kim, Dongsu ; Chae, Ji Eon ; Lee, Sanghyeok ; Kim, Sang Moon ; Yoo, Sung Jong ; Kim, Hyoung-Juhn ; Choi, Mansoo ; Jang, Segeun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-5016734b90316781a2eabf0a5d3f89e4912e4bad981ca39a9bc0d3eeeae497923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jiwoo</creatorcontrib><creatorcontrib>Kim, Dongsu</creatorcontrib><creatorcontrib>Chae, Ji Eon</creatorcontrib><creatorcontrib>Lee, Sanghyeok</creatorcontrib><creatorcontrib>Kim, Sang Moon</creatorcontrib><creatorcontrib>Yoo, Sung Jong</creatorcontrib><creatorcontrib>Kim, Hyoung-Juhn</creatorcontrib><creatorcontrib>Choi, Mansoo</creatorcontrib><creatorcontrib>Jang, Segeun</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jiwoo</au><au>Kim, Dongsu</au><au>Chae, Ji Eon</au><au>Lee, Sanghyeok</au><au>Kim, Sang Moon</au><au>Yoo, Sung Jong</au><au>Kim, Hyoung-Juhn</au><au>Choi, Mansoo</au><au>Jang, Segeun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Plasma-Mediated Microstructured Hydrocarbon Membrane for Improving Interface Adhesion and Mass Transport in Polymer Electrolyte Fuel Cells</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-11-16</date><risdate>2022</risdate><volume>14</volume><issue>45</issue><spage>50956</spage><epage>50965</epage><pages>50956-50965</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Developing a method for fabricating high-efficient and low-cost fuel cells is imperative for commercializing polymer electrolyte membrane (PEM) fuel cells (FCs). This study introduces a mechanical and chemical modification technique using the oxygen plasma irradiation process for hydrocarbon-based (HC) PEM. The oxygen functional groups were introduced on the HC-PEM surface through the plasma process in the controlled area, and microsized structures were formed. The modified membrane was incorporated with plasma-treated electrodes, improving the adhesive force between the HC-PEM and the electrode. The decal transfer was enabled at low temperatures and pressures, and the interfacial resistance in the membrane–electrode assembly (MEA) was reduced. Furthermore, the micropillar structured electrode configuration significantly reduced the oxygen transport resistance in the MEA. Various diagnostic techniques were conducted to find out the effects of the membrane surface modification, interface adhesion, and mass transport, such as physical characterizations, mechanical stress tests, and diverse electrochemical measurements.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c15122</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3198-6899</orcidid><orcidid>https://orcid.org/0000-0002-2311-2211</orcidid><orcidid>https://orcid.org/0000-0001-8319-8400</orcidid><orcidid>https://orcid.org/0000-0003-1556-0206</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-11, Vol.14 (45), p.50956-50965 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2731717475 |
source | ACS Publications |
subjects | Energy, Environmental, and Catalysis Applications |
title | Oxygen Plasma-Mediated Microstructured Hydrocarbon Membrane for Improving Interface Adhesion and Mass Transport in Polymer Electrolyte Fuel Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Plasma-Mediated%20Microstructured%20Hydrocarbon%20Membrane%20for%20Improving%20Interface%20Adhesion%20and%20Mass%20Transport%20in%20Polymer%20Electrolyte%20Fuel%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Choi,%20Jiwoo&rft.date=2022-11-16&rft.volume=14&rft.issue=45&rft.spage=50956&rft.epage=50965&rft.pages=50956-50965&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c15122&rft_dat=%3Cproquest_cross%3E2731717475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731717475&rft_id=info:pmid/&rfr_iscdi=true |