Implementation of an AI-assisted fragment-generator in an open-source platform

We recently reported a deep learning model to facilitate fragment library design, which is critical for efficient hit identification. However, our model was implemented in Python. We have now created an implementation in the KNIME graphical pipelining environment which we hope will allow experimenta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MedChemComm 2022-10, Vol.13 (1), p.125-1211
Hauptverfasser: Bilsland, Alan E, Pugliese, Angelo, Bower, Justin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1211
container_issue 1
container_start_page 125
container_title MedChemComm
container_volume 13
creator Bilsland, Alan E
Pugliese, Angelo
Bower, Justin
description We recently reported a deep learning model to facilitate fragment library design, which is critical for efficient hit identification. However, our model was implemented in Python. We have now created an implementation in the KNIME graphical pipelining environment which we hope will allow experimentation by users with limited programming knowledge. We report a deep learning model to facilitate fragment library design, which is critical for efficient hit identification, and an implementation in the KNIME graphical workflow environment which should facilitate a more codeless use.
doi_str_mv 10.1039/d2md00152g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2731427898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731427898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-8ac7c36cee82f12738c505246408cdc80ba972a9c859186c8a7341c4bc06cbd3</originalsourceid><addsrcrecordid>eNpdkc9LwzAcxYMoOHQX70LBiwjVJG3T5CKMTedg6mX3kH6bzo42qUkr-N-buTF_nL4Pvh8e7_EQuiD4luBE3JW0LTEmGV0foRFlCY054_T4lz5FY-83GGOaEcIyMUIvi7ZrdKtNr_ramshWkTLRZBEr72vf6zKqnFpv__FaG-1Ub11Umy1kO21ibwcHOuoa1VfWtefopFKN1-P9PUOrx4fV9Clevs4X08kyhoSlfcwV5EGB1pxWhOYJhwxnNGUp5lACx4USOVUCeCYIZ8BVnqQE0gIwg6JMztD9zrYbilaXEOI51cjO1a1yn9KqWv79mPpNru2HFFkuREqDwfXewNn3QftetrUH3TTKaDt4GSKRlOZc8IBe_UM3obMJ7QJFM8EwyVmgbnYUOOu909UhDMFyu46c0efZ9zrzAF_uYOfhwP2sl3wB6fyMYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725960176</pqid></control><display><type>article</type><title>Implementation of an AI-assisted fragment-generator in an open-source platform</title><source>Royal Society Of Chemistry Journals 2008-</source><source>PubMed Central</source><creator>Bilsland, Alan E ; Pugliese, Angelo ; Bower, Justin</creator><creatorcontrib>Bilsland, Alan E ; Pugliese, Angelo ; Bower, Justin</creatorcontrib><description>We recently reported a deep learning model to facilitate fragment library design, which is critical for efficient hit identification. However, our model was implemented in Python. We have now created an implementation in the KNIME graphical pipelining environment which we hope will allow experimentation by users with limited programming knowledge. We report a deep learning model to facilitate fragment library design, which is critical for efficient hit identification, and an implementation in the KNIME graphical workflow environment which should facilitate a more codeless use.</description><identifier>ISSN: 2632-8682</identifier><identifier>ISSN: 2040-2503</identifier><identifier>EISSN: 2632-8682</identifier><identifier>EISSN: 2040-2511</identifier><identifier>DOI: 10.1039/d2md00152g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Deep learning ; Experimentation</subject><ispartof>MedChemComm, 2022-10, Vol.13 (1), p.125-1211</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><rights>This journal is © The Royal Society of Chemistry 2022 RSC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-8ac7c36cee82f12738c505246408cdc80ba972a9c859186c8a7341c4bc06cbd3</cites><orcidid>0000-0002-9472-7440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579942/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579942/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,53782,53784</link.rule.ids></links><search><creatorcontrib>Bilsland, Alan E</creatorcontrib><creatorcontrib>Pugliese, Angelo</creatorcontrib><creatorcontrib>Bower, Justin</creatorcontrib><title>Implementation of an AI-assisted fragment-generator in an open-source platform</title><title>MedChemComm</title><description>We recently reported a deep learning model to facilitate fragment library design, which is critical for efficient hit identification. However, our model was implemented in Python. We have now created an implementation in the KNIME graphical pipelining environment which we hope will allow experimentation by users with limited programming knowledge. We report a deep learning model to facilitate fragment library design, which is critical for efficient hit identification, and an implementation in the KNIME graphical workflow environment which should facilitate a more codeless use.</description><subject>Chemistry</subject><subject>Deep learning</subject><subject>Experimentation</subject><issn>2632-8682</issn><issn>2040-2503</issn><issn>2632-8682</issn><issn>2040-2511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc9LwzAcxYMoOHQX70LBiwjVJG3T5CKMTedg6mX3kH6bzo42qUkr-N-buTF_nL4Pvh8e7_EQuiD4luBE3JW0LTEmGV0foRFlCY054_T4lz5FY-83GGOaEcIyMUIvi7ZrdKtNr_ramshWkTLRZBEr72vf6zKqnFpv__FaG-1Ub11Umy1kO21ibwcHOuoa1VfWtefopFKN1-P9PUOrx4fV9Clevs4X08kyhoSlfcwV5EGB1pxWhOYJhwxnNGUp5lACx4USOVUCeCYIZ8BVnqQE0gIwg6JMztD9zrYbilaXEOI51cjO1a1yn9KqWv79mPpNru2HFFkuREqDwfXewNn3QftetrUH3TTKaDt4GSKRlOZc8IBe_UM3obMJ7QJFM8EwyVmgbnYUOOu909UhDMFyu46c0efZ9zrzAF_uYOfhwP2sl3wB6fyMYA</recordid><startdate>20221019</startdate><enddate>20221019</enddate><creator>Bilsland, Alan E</creator><creator>Pugliese, Angelo</creator><creator>Bower, Justin</creator><general>Royal Society of Chemistry</general><general>RSC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T5</scope><scope>7T7</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9472-7440</orcidid></search><sort><creationdate>20221019</creationdate><title>Implementation of an AI-assisted fragment-generator in an open-source platform</title><author>Bilsland, Alan E ; Pugliese, Angelo ; Bower, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-8ac7c36cee82f12738c505246408cdc80ba972a9c859186c8a7341c4bc06cbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry</topic><topic>Deep learning</topic><topic>Experimentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilsland, Alan E</creatorcontrib><creatorcontrib>Pugliese, Angelo</creatorcontrib><creatorcontrib>Bower, Justin</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>MedChemComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilsland, Alan E</au><au>Pugliese, Angelo</au><au>Bower, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of an AI-assisted fragment-generator in an open-source platform</atitle><jtitle>MedChemComm</jtitle><date>2022-10-19</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>125</spage><epage>1211</epage><pages>125-1211</pages><issn>2632-8682</issn><issn>2040-2503</issn><eissn>2632-8682</eissn><eissn>2040-2511</eissn><abstract>We recently reported a deep learning model to facilitate fragment library design, which is critical for efficient hit identification. However, our model was implemented in Python. We have now created an implementation in the KNIME graphical pipelining environment which we hope will allow experimentation by users with limited programming knowledge. We report a deep learning model to facilitate fragment library design, which is critical for efficient hit identification, and an implementation in the KNIME graphical workflow environment which should facilitate a more codeless use.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2md00152g</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9472-7440</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-8682
ispartof MedChemComm, 2022-10, Vol.13 (1), p.125-1211
issn 2632-8682
2040-2503
2632-8682
2040-2511
language eng
recordid cdi_proquest_miscellaneous_2731427898
source Royal Society Of Chemistry Journals 2008-; PubMed Central
subjects Chemistry
Deep learning
Experimentation
title Implementation of an AI-assisted fragment-generator in an open-source platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20an%20AI-assisted%20fragment-generator%20in%20an%20open-source%20platform&rft.jtitle=MedChemComm&rft.au=Bilsland,%20Alan%20E&rft.date=2022-10-19&rft.volume=13&rft.issue=1&rft.spage=125&rft.epage=1211&rft.pages=125-1211&rft.issn=2632-8682&rft.eissn=2632-8682&rft_id=info:doi/10.1039/d2md00152g&rft_dat=%3Cproquest_cross%3E2731427898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725960176&rft_id=info:pmid/&rfr_iscdi=true