Implementation of an AI-assisted fragment-generator in an open-source platform
We recently reported a deep learning model to facilitate fragment library design, which is critical for efficient hit identification. However, our model was implemented in Python. We have now created an implementation in the KNIME graphical pipelining environment which we hope will allow experimenta...
Gespeichert in:
Veröffentlicht in: | MedChemComm 2022-10, Vol.13 (1), p.125-1211 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1211 |
---|---|
container_issue | 1 |
container_start_page | 125 |
container_title | MedChemComm |
container_volume | 13 |
creator | Bilsland, Alan E Pugliese, Angelo Bower, Justin |
description | We recently reported a deep learning model to facilitate fragment library design, which is critical for efficient hit identification. However, our model was implemented in Python. We have now created an implementation in the KNIME graphical pipelining environment which we hope will allow experimentation by users with limited programming knowledge.
We report a deep learning model to facilitate fragment library design, which is critical for efficient hit identification, and an implementation in the KNIME graphical workflow environment which should facilitate a more codeless use. |
doi_str_mv | 10.1039/d2md00152g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2731427898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731427898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-8ac7c36cee82f12738c505246408cdc80ba972a9c859186c8a7341c4bc06cbd3</originalsourceid><addsrcrecordid>eNpdkc9LwzAcxYMoOHQX70LBiwjVJG3T5CKMTedg6mX3kH6bzo42qUkr-N-buTF_nL4Pvh8e7_EQuiD4luBE3JW0LTEmGV0foRFlCY054_T4lz5FY-83GGOaEcIyMUIvi7ZrdKtNr_ramshWkTLRZBEr72vf6zKqnFpv__FaG-1Ub11Umy1kO21ibwcHOuoa1VfWtefopFKN1-P9PUOrx4fV9Clevs4X08kyhoSlfcwV5EGB1pxWhOYJhwxnNGUp5lACx4USOVUCeCYIZ8BVnqQE0gIwg6JMztD9zrYbilaXEOI51cjO1a1yn9KqWv79mPpNru2HFFkuREqDwfXewNn3QftetrUH3TTKaDt4GSKRlOZc8IBe_UM3obMJ7QJFM8EwyVmgbnYUOOu909UhDMFyu46c0efZ9zrzAF_uYOfhwP2sl3wB6fyMYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725960176</pqid></control><display><type>article</type><title>Implementation of an AI-assisted fragment-generator in an open-source platform</title><source>Royal Society Of Chemistry Journals 2008-</source><source>PubMed Central</source><creator>Bilsland, Alan E ; Pugliese, Angelo ; Bower, Justin</creator><creatorcontrib>Bilsland, Alan E ; Pugliese, Angelo ; Bower, Justin</creatorcontrib><description>We recently reported a deep learning model to facilitate fragment library design, which is critical for efficient hit identification. However, our model was implemented in Python. We have now created an implementation in the KNIME graphical pipelining environment which we hope will allow experimentation by users with limited programming knowledge.
We report a deep learning model to facilitate fragment library design, which is critical for efficient hit identification, and an implementation in the KNIME graphical workflow environment which should facilitate a more codeless use.</description><identifier>ISSN: 2632-8682</identifier><identifier>ISSN: 2040-2503</identifier><identifier>EISSN: 2632-8682</identifier><identifier>EISSN: 2040-2511</identifier><identifier>DOI: 10.1039/d2md00152g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemistry ; Deep learning ; Experimentation</subject><ispartof>MedChemComm, 2022-10, Vol.13 (1), p.125-1211</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><rights>This journal is © The Royal Society of Chemistry 2022 RSC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-8ac7c36cee82f12738c505246408cdc80ba972a9c859186c8a7341c4bc06cbd3</cites><orcidid>0000-0002-9472-7440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579942/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579942/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27915,27916,53782,53784</link.rule.ids></links><search><creatorcontrib>Bilsland, Alan E</creatorcontrib><creatorcontrib>Pugliese, Angelo</creatorcontrib><creatorcontrib>Bower, Justin</creatorcontrib><title>Implementation of an AI-assisted fragment-generator in an open-source platform</title><title>MedChemComm</title><description>We recently reported a deep learning model to facilitate fragment library design, which is critical for efficient hit identification. However, our model was implemented in Python. We have now created an implementation in the KNIME graphical pipelining environment which we hope will allow experimentation by users with limited programming knowledge.
We report a deep learning model to facilitate fragment library design, which is critical for efficient hit identification, and an implementation in the KNIME graphical workflow environment which should facilitate a more codeless use.</description><subject>Chemistry</subject><subject>Deep learning</subject><subject>Experimentation</subject><issn>2632-8682</issn><issn>2040-2503</issn><issn>2632-8682</issn><issn>2040-2511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc9LwzAcxYMoOHQX70LBiwjVJG3T5CKMTedg6mX3kH6bzo42qUkr-N-buTF_nL4Pvh8e7_EQuiD4luBE3JW0LTEmGV0foRFlCY054_T4lz5FY-83GGOaEcIyMUIvi7ZrdKtNr_ramshWkTLRZBEr72vf6zKqnFpv__FaG-1Ub11Umy1kO21ibwcHOuoa1VfWtefopFKN1-P9PUOrx4fV9Clevs4X08kyhoSlfcwV5EGB1pxWhOYJhwxnNGUp5lACx4USOVUCeCYIZ8BVnqQE0gIwg6JMztD9zrYbilaXEOI51cjO1a1yn9KqWv79mPpNru2HFFkuREqDwfXewNn3QftetrUH3TTKaDt4GSKRlOZc8IBe_UM3obMJ7QJFM8EwyVmgbnYUOOu909UhDMFyu46c0efZ9zrzAF_uYOfhwP2sl3wB6fyMYA</recordid><startdate>20221019</startdate><enddate>20221019</enddate><creator>Bilsland, Alan E</creator><creator>Pugliese, Angelo</creator><creator>Bower, Justin</creator><general>Royal Society of Chemistry</general><general>RSC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T5</scope><scope>7T7</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9472-7440</orcidid></search><sort><creationdate>20221019</creationdate><title>Implementation of an AI-assisted fragment-generator in an open-source platform</title><author>Bilsland, Alan E ; Pugliese, Angelo ; Bower, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-8ac7c36cee82f12738c505246408cdc80ba972a9c859186c8a7341c4bc06cbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry</topic><topic>Deep learning</topic><topic>Experimentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bilsland, Alan E</creatorcontrib><creatorcontrib>Pugliese, Angelo</creatorcontrib><creatorcontrib>Bower, Justin</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>MedChemComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bilsland, Alan E</au><au>Pugliese, Angelo</au><au>Bower, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of an AI-assisted fragment-generator in an open-source platform</atitle><jtitle>MedChemComm</jtitle><date>2022-10-19</date><risdate>2022</risdate><volume>13</volume><issue>1</issue><spage>125</spage><epage>1211</epage><pages>125-1211</pages><issn>2632-8682</issn><issn>2040-2503</issn><eissn>2632-8682</eissn><eissn>2040-2511</eissn><abstract>We recently reported a deep learning model to facilitate fragment library design, which is critical for efficient hit identification. However, our model was implemented in Python. We have now created an implementation in the KNIME graphical pipelining environment which we hope will allow experimentation by users with limited programming knowledge.
We report a deep learning model to facilitate fragment library design, which is critical for efficient hit identification, and an implementation in the KNIME graphical workflow environment which should facilitate a more codeless use.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2md00152g</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9472-7440</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-8682 |
ispartof | MedChemComm, 2022-10, Vol.13 (1), p.125-1211 |
issn | 2632-8682 2040-2503 2632-8682 2040-2511 |
language | eng |
recordid | cdi_proquest_miscellaneous_2731427898 |
source | Royal Society Of Chemistry Journals 2008-; PubMed Central |
subjects | Chemistry Deep learning Experimentation |
title | Implementation of an AI-assisted fragment-generator in an open-source platform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20an%20AI-assisted%20fragment-generator%20in%20an%20open-source%20platform&rft.jtitle=MedChemComm&rft.au=Bilsland,%20Alan%20E&rft.date=2022-10-19&rft.volume=13&rft.issue=1&rft.spage=125&rft.epage=1211&rft.pages=125-1211&rft.issn=2632-8682&rft.eissn=2632-8682&rft_id=info:doi/10.1039/d2md00152g&rft_dat=%3Cproquest_cross%3E2731427898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725960176&rft_id=info:pmid/&rfr_iscdi=true |