Formation and evolution of C–C, C–O, CO and C–N bonds in chemical reactions of prebiotic interest
A series of prebiotic chemical reactions yielding the precursor building blocks of amino acids, proteins and carbohydrates, starting solely from HCN and water is studied here. We closely follow the formation and evolution of the pivotal C–C, C–O, CO, and C–N bonds, which dictate the chemistry of th...
Gespeichert in:
Veröffentlicht in: | RSC advances 2022-10, Vol.12 (44), p.28804-28817 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28817 |
---|---|
container_issue | 44 |
container_start_page | 28804 |
container_title | RSC advances |
container_volume | 12 |
creator | Arias, Alejandro Gómez, Sara Rojas-Valencia, Natalia Núñez-Zarur, Francisco Cappelli, Chiara Murillo-López, Juliana A. Restrepo, Albeiro |
description | A series of prebiotic chemical reactions yielding the precursor building blocks of amino acids, proteins and carbohydrates, starting solely from HCN and water is studied here. We closely follow the formation and evolution of the pivotal C–C, C–O, CO, and C–N bonds, which dictate the chemistry of the molecules of life. In many cases, formation of these bonds is set in motion by proton transfers in which individual water molecules act as catalysts so that water atoms end up in the products. Our results indicate that the prebiotic formation of carbon dioxide, formaldehyde, formic acid, formaldimine, glycolaldehyde, glycine, glycolonitrile, and oxazole derivatives, among others, are best described as highly nonsynchronous concerted single step processes. Nonetheless, for all reactions involving double proton transfer, the formation and breaking of O–H bonds around a particular O atom occur in a synchronous fashion, apparently independently from other primitive processes. For the most part, the first process to initiate seems to be the double proton transfer in the reactions where they are present, then bond breaking/formation around the reactive carbon in the carbonyl group and finally rupture of the C–N bonds in the appropriate cases, which are the most reluctant to break. Remarkably, within the limitations of our non-dynamical computational model, the wide ranges of temperature and pressure in which these reactions occur, downplay the problematic determination of the exact constraints on the early Earth. |
doi_str_mv | 10.1039/d2ra06000k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2731427853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726316629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-8ff9df132f40df9a99dc42bfd428f8009f4976b182f91f701d267b641410b4503</originalsourceid><addsrcrecordid>eNpdkMFKxDAQhoMouKxefIKCFxGrkzRNm-NSXRUXF0TPJU0T7No2a9IK3tZn8A19AJ_BtOtBPP0zw_fPDD9CRxjOMUT8oiRWAAOAlx00IUBZSIDx3T_1Pjp0buUJYDEmDE_Qam5sI7rKtIFoy0C9mbofO6OD7GvzmZ2NsvTyvflYjtAwuA8K05YuqNpAPqumkqIOrBJy8LrBvLaqqExXSY90yirXHaA9LWqnDn91ip7mV4_ZTbhYXt9ms0UoSZx2Yao1LzWOiKZQai44LyUlhS4pSXUKwDXlCStwSjTHOgFcEpYUjGKKoaAxRFN0st27tua194fzpnJS1bVoleldTpIIU5KkceTR43_oyvS29d95irAIM0a4p063lLTGOat0vrZVI-x7jiEfks8vycNsTP4u-gFcDHbh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726316629</pqid></control><display><type>article</type><title>Formation and evolution of C–C, C–O, CO and C–N bonds in chemical reactions of prebiotic interest</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Arias, Alejandro ; Gómez, Sara ; Rojas-Valencia, Natalia ; Núñez-Zarur, Francisco ; Cappelli, Chiara ; Murillo-López, Juliana A. ; Restrepo, Albeiro</creator><creatorcontrib>Arias, Alejandro ; Gómez, Sara ; Rojas-Valencia, Natalia ; Núñez-Zarur, Francisco ; Cappelli, Chiara ; Murillo-López, Juliana A. ; Restrepo, Albeiro</creatorcontrib><description>A series of prebiotic chemical reactions yielding the precursor building blocks of amino acids, proteins and carbohydrates, starting solely from HCN and water is studied here. We closely follow the formation and evolution of the pivotal C–C, C–O, CO, and C–N bonds, which dictate the chemistry of the molecules of life. In many cases, formation of these bonds is set in motion by proton transfers in which individual water molecules act as catalysts so that water atoms end up in the products. Our results indicate that the prebiotic formation of carbon dioxide, formaldehyde, formic acid, formaldimine, glycolaldehyde, glycine, glycolonitrile, and oxazole derivatives, among others, are best described as highly nonsynchronous concerted single step processes. Nonetheless, for all reactions involving double proton transfer, the formation and breaking of O–H bonds around a particular O atom occur in a synchronous fashion, apparently independently from other primitive processes. For the most part, the first process to initiate seems to be the double proton transfer in the reactions where they are present, then bond breaking/formation around the reactive carbon in the carbonyl group and finally rupture of the C–N bonds in the appropriate cases, which are the most reluctant to break. Remarkably, within the limitations of our non-dynamical computational model, the wide ranges of temperature and pressure in which these reactions occur, downplay the problematic determination of the exact constraints on the early Earth.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d2ra06000k</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Amino acids ; Carbohydrates ; Carbon dioxide ; Carbonyl groups ; Carbonyls ; Chemical bonds ; Chemical reactions ; Evolution ; Formic acid ; Glycine ; Oxazole ; Prebiotics ; Protons ; Water chemistry</subject><ispartof>RSC advances, 2022-10, Vol.12 (44), p.28804-28817</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-8ff9df132f40df9a99dc42bfd428f8009f4976b182f91f701d267b641410b4503</citedby><cites>FETCH-LOGICAL-c258t-8ff9df132f40df9a99dc42bfd428f8009f4976b182f91f701d267b641410b4503</cites><orcidid>0000-0002-9244-9328 ; 0000-0002-7380-3010 ; 0000-0002-5430-9228 ; 0000-0002-4872-4505 ; 0000-0002-3351-4652 ; 0000-0003-1088-3305 ; 0000-0002-7866-7791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Arias, Alejandro</creatorcontrib><creatorcontrib>Gómez, Sara</creatorcontrib><creatorcontrib>Rojas-Valencia, Natalia</creatorcontrib><creatorcontrib>Núñez-Zarur, Francisco</creatorcontrib><creatorcontrib>Cappelli, Chiara</creatorcontrib><creatorcontrib>Murillo-López, Juliana A.</creatorcontrib><creatorcontrib>Restrepo, Albeiro</creatorcontrib><title>Formation and evolution of C–C, C–O, CO and C–N bonds in chemical reactions of prebiotic interest</title><title>RSC advances</title><description>A series of prebiotic chemical reactions yielding the precursor building blocks of amino acids, proteins and carbohydrates, starting solely from HCN and water is studied here. We closely follow the formation and evolution of the pivotal C–C, C–O, CO, and C–N bonds, which dictate the chemistry of the molecules of life. In many cases, formation of these bonds is set in motion by proton transfers in which individual water molecules act as catalysts so that water atoms end up in the products. Our results indicate that the prebiotic formation of carbon dioxide, formaldehyde, formic acid, formaldimine, glycolaldehyde, glycine, glycolonitrile, and oxazole derivatives, among others, are best described as highly nonsynchronous concerted single step processes. Nonetheless, for all reactions involving double proton transfer, the formation and breaking of O–H bonds around a particular O atom occur in a synchronous fashion, apparently independently from other primitive processes. For the most part, the first process to initiate seems to be the double proton transfer in the reactions where they are present, then bond breaking/formation around the reactive carbon in the carbonyl group and finally rupture of the C–N bonds in the appropriate cases, which are the most reluctant to break. Remarkably, within the limitations of our non-dynamical computational model, the wide ranges of temperature and pressure in which these reactions occur, downplay the problematic determination of the exact constraints on the early Earth.</description><subject>Amino acids</subject><subject>Carbohydrates</subject><subject>Carbon dioxide</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Chemical bonds</subject><subject>Chemical reactions</subject><subject>Evolution</subject><subject>Formic acid</subject><subject>Glycine</subject><subject>Oxazole</subject><subject>Prebiotics</subject><subject>Protons</subject><subject>Water chemistry</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKxDAQhoMouKxefIKCFxGrkzRNm-NSXRUXF0TPJU0T7No2a9IK3tZn8A19AJ_BtOtBPP0zw_fPDD9CRxjOMUT8oiRWAAOAlx00IUBZSIDx3T_1Pjp0buUJYDEmDE_Qam5sI7rKtIFoy0C9mbofO6OD7GvzmZ2NsvTyvflYjtAwuA8K05YuqNpAPqumkqIOrBJy8LrBvLaqqExXSY90yirXHaA9LWqnDn91ip7mV4_ZTbhYXt9ms0UoSZx2Yao1LzWOiKZQai44LyUlhS4pSXUKwDXlCStwSjTHOgFcEpYUjGKKoaAxRFN0st27tua194fzpnJS1bVoleldTpIIU5KkceTR43_oyvS29d95irAIM0a4p063lLTGOat0vrZVI-x7jiEfks8vycNsTP4u-gFcDHbh</recordid><startdate>20221004</startdate><enddate>20221004</enddate><creator>Arias, Alejandro</creator><creator>Gómez, Sara</creator><creator>Rojas-Valencia, Natalia</creator><creator>Núñez-Zarur, Francisco</creator><creator>Cappelli, Chiara</creator><creator>Murillo-López, Juliana A.</creator><creator>Restrepo, Albeiro</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9244-9328</orcidid><orcidid>https://orcid.org/0000-0002-7380-3010</orcidid><orcidid>https://orcid.org/0000-0002-5430-9228</orcidid><orcidid>https://orcid.org/0000-0002-4872-4505</orcidid><orcidid>https://orcid.org/0000-0002-3351-4652</orcidid><orcidid>https://orcid.org/0000-0003-1088-3305</orcidid><orcidid>https://orcid.org/0000-0002-7866-7791</orcidid></search><sort><creationdate>20221004</creationdate><title>Formation and evolution of C–C, C–O, CO and C–N bonds in chemical reactions of prebiotic interest</title><author>Arias, Alejandro ; Gómez, Sara ; Rojas-Valencia, Natalia ; Núñez-Zarur, Francisco ; Cappelli, Chiara ; Murillo-López, Juliana A. ; Restrepo, Albeiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-8ff9df132f40df9a99dc42bfd428f8009f4976b182f91f701d267b641410b4503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Carbohydrates</topic><topic>Carbon dioxide</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Chemical bonds</topic><topic>Chemical reactions</topic><topic>Evolution</topic><topic>Formic acid</topic><topic>Glycine</topic><topic>Oxazole</topic><topic>Prebiotics</topic><topic>Protons</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias, Alejandro</creatorcontrib><creatorcontrib>Gómez, Sara</creatorcontrib><creatorcontrib>Rojas-Valencia, Natalia</creatorcontrib><creatorcontrib>Núñez-Zarur, Francisco</creatorcontrib><creatorcontrib>Cappelli, Chiara</creatorcontrib><creatorcontrib>Murillo-López, Juliana A.</creatorcontrib><creatorcontrib>Restrepo, Albeiro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias, Alejandro</au><au>Gómez, Sara</au><au>Rojas-Valencia, Natalia</au><au>Núñez-Zarur, Francisco</au><au>Cappelli, Chiara</au><au>Murillo-López, Juliana A.</au><au>Restrepo, Albeiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation and evolution of C–C, C–O, CO and C–N bonds in chemical reactions of prebiotic interest</atitle><jtitle>RSC advances</jtitle><date>2022-10-04</date><risdate>2022</risdate><volume>12</volume><issue>44</issue><spage>28804</spage><epage>28817</epage><pages>28804-28817</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>A series of prebiotic chemical reactions yielding the precursor building blocks of amino acids, proteins and carbohydrates, starting solely from HCN and water is studied here. We closely follow the formation and evolution of the pivotal C–C, C–O, CO, and C–N bonds, which dictate the chemistry of the molecules of life. In many cases, formation of these bonds is set in motion by proton transfers in which individual water molecules act as catalysts so that water atoms end up in the products. Our results indicate that the prebiotic formation of carbon dioxide, formaldehyde, formic acid, formaldimine, glycolaldehyde, glycine, glycolonitrile, and oxazole derivatives, among others, are best described as highly nonsynchronous concerted single step processes. Nonetheless, for all reactions involving double proton transfer, the formation and breaking of O–H bonds around a particular O atom occur in a synchronous fashion, apparently independently from other primitive processes. For the most part, the first process to initiate seems to be the double proton transfer in the reactions where they are present, then bond breaking/formation around the reactive carbon in the carbonyl group and finally rupture of the C–N bonds in the appropriate cases, which are the most reluctant to break. Remarkably, within the limitations of our non-dynamical computational model, the wide ranges of temperature and pressure in which these reactions occur, downplay the problematic determination of the exact constraints on the early Earth.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ra06000k</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9244-9328</orcidid><orcidid>https://orcid.org/0000-0002-7380-3010</orcidid><orcidid>https://orcid.org/0000-0002-5430-9228</orcidid><orcidid>https://orcid.org/0000-0002-4872-4505</orcidid><orcidid>https://orcid.org/0000-0002-3351-4652</orcidid><orcidid>https://orcid.org/0000-0003-1088-3305</orcidid><orcidid>https://orcid.org/0000-0002-7866-7791</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2022-10, Vol.12 (44), p.28804-28817 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_proquest_miscellaneous_2731427853 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Amino acids Carbohydrates Carbon dioxide Carbonyl groups Carbonyls Chemical bonds Chemical reactions Evolution Formic acid Glycine Oxazole Prebiotics Protons Water chemistry |
title | Formation and evolution of C–C, C–O, CO and C–N bonds in chemical reactions of prebiotic interest |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20and%20evolution%20of%20C%E2%80%93C,%20C%E2%80%93O,%20C%EE%80%81O%20and%20C%E2%80%93N%20bonds%20in%20chemical%20reactions%20of%20prebiotic%20interest&rft.jtitle=RSC%20advances&rft.au=Arias,%20Alejandro&rft.date=2022-10-04&rft.volume=12&rft.issue=44&rft.spage=28804&rft.epage=28817&rft.pages=28804-28817&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d2ra06000k&rft_dat=%3Cproquest_cross%3E2726316629%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726316629&rft_id=info:pmid/&rfr_iscdi=true |