An experimental investigation of concentrated suspension flows in a rectangular channel
An experimental adaptation of the well-known laser-Doppler anemometry technique is developed for measuring the velocity and concentration profiles in concentrated suspension flows. To circumvent the problem of optical turbidity, the refractive indices of the solid and liquid phases are closely match...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 1994-05, Vol.266, p.1-32 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An experimental adaptation of the well-known laser-Doppler anemometry technique is developed for measuring the velocity and concentration profiles in concentrated suspension flows. To circumvent the problem of optical turbidity, the refractive indices of the solid and liquid phases are closely matched. The residual turbidity, owing to small mismatches of the refractive indices, as well as impurities in the particles, allows a Doppler signal to be detected when a particle passes through the scattering volume. By counting the number of Doppler signals in a period of time, the local volume fraction is also measured. This new technique is utilized to study concentrated suspension flows in a rectangular channel. The general behavior of the suspension is that the velocity profile is blunted while the concentration profile has a maximum near the centre. Comparisons are made with theoretical predictions based on the shear-induced particle migration theory. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S0022112094000911 |