Semiparametric Estimation of the Transformation Model by Leveraging External Aggregate Data in the Presence of Population Heterogeneity

Leveraging information in aggregate data from external sources to improve estimation efficiency and prediction accuracy with smaller scale studies has drawn a great deal of attention in recent years. Yet, conventional methods often either ignore uncertainty in the external information or fail to acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2023-09, Vol.79 (3), p.1996-2009
Hauptverfasser: Cheng, Yu-Jen, Liu, Yen-Chun, Tsai, Chang-Yu, Huang, Chiung-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2009
container_issue 3
container_start_page 1996
container_title Biometrics
container_volume 79
creator Cheng, Yu-Jen
Liu, Yen-Chun
Tsai, Chang-Yu
Huang, Chiung-Yu
description Leveraging information in aggregate data from external sources to improve estimation efficiency and prediction accuracy with smaller scale studies has drawn a great deal of attention in recent years. Yet, conventional methods often either ignore uncertainty in the external information or fail to account for the heterogeneity between internal and external studies. This article proposes an empirical likelihood-based framework to improve the estimation of the semiparametric transformation models by incorporating information about the t-year subgroup survival probability from external sources. The proposed estimation procedure incorporates an additional likelihood component to account for uncertainty in the external information and employs a density ratio model to characterize population heterogeneity. We establish the consistency and asymptotic normality of the proposed estimator and show that it is more efficient than the conventional pseudopartial likelihood estimator without combining information. Simulation studies show that the proposed estimator yields little bias and outperforms the conventional approach even in the presence of information uncertainty and heterogeneity. The proposed methodologies are illustrated with an analysis of a pancreatic cancer study.
doi_str_mv 10.1111/biom.13778
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2730644547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2863737127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-98aafe67f98f98a0a252c786375016cb61c57ea88cd7dc9c1fe8165135e1381a3</originalsourceid><addsrcrecordid>eNpdkVFLwzAQx4MoOKcvfoKALyJ0Jk3btI9jTidMHDjBt3LLrjWjbWaSivsEfm3bbU-Gg3DH7_7H3Z-Qa85GvHv3K23qERdSpidkwOOIBywK2SkZMMaSQET845xcOLfp0ixm4YD8vmGtt2ChRm-1olPndQ1em4aagvpPpEsLjSuMPVZfzBorutrROX6jhVI3JZ3-eLQNVHRclhZL8EgfwAPVzV5hYdFho7BXXJhtWx2UZth1mRIb1H53Sc4KqBxeHf8heX-cLiezYP769DwZzwMVZqEPshSgwEQWWdoFMAjjUMk0ETJmPFGrhKtYIqSpWsu1yhQvMOVJzEWMXKQcxJDcHnS31ny16Hxea6ewqqBB07o8lIIlURRHskNv_qEb0_ZrdlQ_UUge9tTdgVLWOGexyLe2u6Dd5ZzlvSd570m-90T8AaAOgSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2863737127</pqid></control><display><type>article</type><title>Semiparametric Estimation of the Transformation Model by Leveraging External Aggregate Data in the Presence of Population Heterogeneity</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Cheng, Yu-Jen ; Liu, Yen-Chun ; Tsai, Chang-Yu ; Huang, Chiung-Yu</creator><creatorcontrib>Cheng, Yu-Jen ; Liu, Yen-Chun ; Tsai, Chang-Yu ; Huang, Chiung-Yu</creatorcontrib><description>Leveraging information in aggregate data from external sources to improve estimation efficiency and prediction accuracy with smaller scale studies has drawn a great deal of attention in recent years. Yet, conventional methods often either ignore uncertainty in the external information or fail to account for the heterogeneity between internal and external studies. This article proposes an empirical likelihood-based framework to improve the estimation of the semiparametric transformation models by incorporating information about the t-year subgroup survival probability from external sources. The proposed estimation procedure incorporates an additional likelihood component to account for uncertainty in the external information and employs a density ratio model to characterize population heterogeneity. We establish the consistency and asymptotic normality of the proposed estimator and show that it is more efficient than the conventional pseudopartial likelihood estimator without combining information. Simulation studies show that the proposed estimator yields little bias and outperforms the conventional approach even in the presence of information uncertainty and heterogeneity. The proposed methodologies are illustrated with an analysis of a pancreatic cancer study.</description><identifier>ISSN: 0006-341X</identifier><identifier>ISSN: 1541-0420</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13778</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Density ratio ; Empirical analysis ; Heterogeneity ; Meta-analysis ; Normality ; Pancreatic cancer ; Subgroups ; Uncertainty</subject><ispartof>Biometrics, 2023-09, Vol.79 (3), p.1996-2009</ispartof><rights>2023 The International Biometric Society.</rights><rights>2022 The International Biometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-98aafe67f98f98a0a252c786375016cb61c57ea88cd7dc9c1fe8165135e1381a3</citedby><cites>FETCH-LOGICAL-c292t-98aafe67f98f98a0a252c786375016cb61c57ea88cd7dc9c1fe8165135e1381a3</cites><orcidid>0000-0003-2313-3562 ; 0000-0001-7496-2825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Cheng, Yu-Jen</creatorcontrib><creatorcontrib>Liu, Yen-Chun</creatorcontrib><creatorcontrib>Tsai, Chang-Yu</creatorcontrib><creatorcontrib>Huang, Chiung-Yu</creatorcontrib><title>Semiparametric Estimation of the Transformation Model by Leveraging External Aggregate Data in the Presence of Population Heterogeneity</title><title>Biometrics</title><description>Leveraging information in aggregate data from external sources to improve estimation efficiency and prediction accuracy with smaller scale studies has drawn a great deal of attention in recent years. Yet, conventional methods often either ignore uncertainty in the external information or fail to account for the heterogeneity between internal and external studies. This article proposes an empirical likelihood-based framework to improve the estimation of the semiparametric transformation models by incorporating information about the t-year subgroup survival probability from external sources. The proposed estimation procedure incorporates an additional likelihood component to account for uncertainty in the external information and employs a density ratio model to characterize population heterogeneity. We establish the consistency and asymptotic normality of the proposed estimator and show that it is more efficient than the conventional pseudopartial likelihood estimator without combining information. Simulation studies show that the proposed estimator yields little bias and outperforms the conventional approach even in the presence of information uncertainty and heterogeneity. The proposed methodologies are illustrated with an analysis of a pancreatic cancer study.</description><subject>Density ratio</subject><subject>Empirical analysis</subject><subject>Heterogeneity</subject><subject>Meta-analysis</subject><subject>Normality</subject><subject>Pancreatic cancer</subject><subject>Subgroups</subject><subject>Uncertainty</subject><issn>0006-341X</issn><issn>1541-0420</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkVFLwzAQx4MoOKcvfoKALyJ0Jk3btI9jTidMHDjBt3LLrjWjbWaSivsEfm3bbU-Gg3DH7_7H3Z-Qa85GvHv3K23qERdSpidkwOOIBywK2SkZMMaSQET845xcOLfp0ixm4YD8vmGtt2ChRm-1olPndQ1em4aagvpPpEsLjSuMPVZfzBorutrROX6jhVI3JZ3-eLQNVHRclhZL8EgfwAPVzV5hYdFho7BXXJhtWx2UZth1mRIb1H53Sc4KqBxeHf8heX-cLiezYP769DwZzwMVZqEPshSgwEQWWdoFMAjjUMk0ETJmPFGrhKtYIqSpWsu1yhQvMOVJzEWMXKQcxJDcHnS31ny16Hxea6ewqqBB07o8lIIlURRHskNv_qEb0_ZrdlQ_UUge9tTdgVLWOGexyLe2u6Dd5ZzlvSd570m-90T8AaAOgSQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Cheng, Yu-Jen</creator><creator>Liu, Yen-Chun</creator><creator>Tsai, Chang-Yu</creator><creator>Huang, Chiung-Yu</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2313-3562</orcidid><orcidid>https://orcid.org/0000-0001-7496-2825</orcidid></search><sort><creationdate>20230901</creationdate><title>Semiparametric Estimation of the Transformation Model by Leveraging External Aggregate Data in the Presence of Population Heterogeneity</title><author>Cheng, Yu-Jen ; Liu, Yen-Chun ; Tsai, Chang-Yu ; Huang, Chiung-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-98aafe67f98f98a0a252c786375016cb61c57ea88cd7dc9c1fe8165135e1381a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Density ratio</topic><topic>Empirical analysis</topic><topic>Heterogeneity</topic><topic>Meta-analysis</topic><topic>Normality</topic><topic>Pancreatic cancer</topic><topic>Subgroups</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Yu-Jen</creatorcontrib><creatorcontrib>Liu, Yen-Chun</creatorcontrib><creatorcontrib>Tsai, Chang-Yu</creatorcontrib><creatorcontrib>Huang, Chiung-Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Yu-Jen</au><au>Liu, Yen-Chun</au><au>Tsai, Chang-Yu</au><au>Huang, Chiung-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiparametric Estimation of the Transformation Model by Leveraging External Aggregate Data in the Presence of Population Heterogeneity</atitle><jtitle>Biometrics</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>79</volume><issue>3</issue><spage>1996</spage><epage>2009</epage><pages>1996-2009</pages><issn>0006-341X</issn><issn>1541-0420</issn><eissn>1541-0420</eissn><abstract>Leveraging information in aggregate data from external sources to improve estimation efficiency and prediction accuracy with smaller scale studies has drawn a great deal of attention in recent years. Yet, conventional methods often either ignore uncertainty in the external information or fail to account for the heterogeneity between internal and external studies. This article proposes an empirical likelihood-based framework to improve the estimation of the semiparametric transformation models by incorporating information about the t-year subgroup survival probability from external sources. The proposed estimation procedure incorporates an additional likelihood component to account for uncertainty in the external information and employs a density ratio model to characterize population heterogeneity. We establish the consistency and asymptotic normality of the proposed estimator and show that it is more efficient than the conventional pseudopartial likelihood estimator without combining information. Simulation studies show that the proposed estimator yields little bias and outperforms the conventional approach even in the presence of information uncertainty and heterogeneity. The proposed methodologies are illustrated with an analysis of a pancreatic cancer study.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/biom.13778</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2313-3562</orcidid><orcidid>https://orcid.org/0000-0001-7496-2825</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2023-09, Vol.79 (3), p.1996-2009
issn 0006-341X
1541-0420
1541-0420
language eng
recordid cdi_proquest_miscellaneous_2730644547
source Wiley Online Library Journals Frontfile Complete; Oxford University Press Journals All Titles (1996-Current)
subjects Density ratio
Empirical analysis
Heterogeneity
Meta-analysis
Normality
Pancreatic cancer
Subgroups
Uncertainty
title Semiparametric Estimation of the Transformation Model by Leveraging External Aggregate Data in the Presence of Population Heterogeneity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiparametric%20Estimation%20of%20the%20Transformation%20Model%20by%20Leveraging%20External%20Aggregate%20Data%20in%20the%20Presence%20of%20Population%20Heterogeneity&rft.jtitle=Biometrics&rft.au=Cheng,%20Yu-Jen&rft.date=2023-09-01&rft.volume=79&rft.issue=3&rft.spage=1996&rft.epage=2009&rft.pages=1996-2009&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13778&rft_dat=%3Cproquest_cross%3E2863737127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2863737127&rft_id=info:pmid/&rfr_iscdi=true