Controllable Size-Independent Three-Dimensional Inertial Focusing in High-Aspect-Ratio Asymmetric Serpentine Microchannels

High-throughput three-dimensional (3D) focusing of cells is the key prerequisite for enabling accurate microfluidic cell detection and analysis. In this work, we develop a high-aspect-ratio asymmetric serpentine (HARAS) microchannel for single-line inertial focusing of particles and cells at the 3D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-11, Vol.94 (45), p.15639-15647
Hauptverfasser: Ni, Chen, Zhou, Zheng, Zhu, Zhixian, Jiang, Di, Xiang, Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15647
container_issue 45
container_start_page 15639
container_title Analytical chemistry (Washington)
container_volume 94
creator Ni, Chen
Zhou, Zheng
Zhu, Zhixian
Jiang, Di
Xiang, Nan
description High-throughput three-dimensional (3D) focusing of cells is the key prerequisite for enabling accurate microfluidic cell detection and analysis. In this work, we develop a high-aspect-ratio asymmetric serpentine (HARAS) microchannel for single-line inertial focusing of particles and cells at the 3D center of the channel. The mechanism of 3D focusing is explored by numerical simulation, and the focusing performances of differently sized particles are characterized experimentally at different flow rates. The results demonstrate the outstanding 3D single-line focusing capability of our HARAS microchannel. In addition, the phenomena of size-independent and position-controllable focusing over wide flow rates are observed. Finally, the applicability of our HARAS microchannel for processing real biological cells is validated by the 3D single-line focusing of A549 cells and MCF-7 cells. Our work overcomes the issue of off-centered focusing of most previous works and provides new insights into the 3D focusing in inertial microfluidics. The proposed HARAS microchannel is extremely easy for mass production and may provide a stable, high-throughput, and position-controllable scheme for subsequent single-cell detection and analysis.
doi_str_mv 10.1021/acs.analchem.2c02361
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2730643593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2730643593</sourcerecordid><originalsourceid>FETCH-LOGICAL-a306t-d01831cae27affce16b5f309d4fb200bc1e66cdffbb37d01c185d24c72ce5b553</originalsourceid><addsrcrecordid>eNp9kUFP3DAUhC0Egi3tP0AoEpdevH22Yyd7XC1QVqJCKvQcOc4La5TYi-0c4NfXdBcOHHrx8-GbGY2GkDMGcwac_dAmzrXTg9ngOOcGuFDsgMyY5EBVXfNDMgMAQXkFcEK-xPgEwBgwdUxOhBJMlmU9I68r71Lww6DbAYt7-4p07TrcYn5cKh42AZFe2hFdtD6nFWuHIdn8ufZmitY9FtYVN_ZxQ5dxiybR3zpZXyzjyzhiCtYU9xiyXbIOi1_WBG822jkc4ldy1Osh4rf9PSV_rq8eVjf09u7nerW8pVqASrQDVgtmNPJK971BplrZC1h0Zd9ygNYwVMp0fd-2osqwYbXseGkqblC2UopT8n3nuw3-ecKYmtFGg7myQz_Fhlc5pxRyITJ68Ql98lPItf9RVbmolFSZKndULhNjwL7ZBjvq8NIwaN62afI2zfs2zX6bLDvfm0_tiN2H6H2MDMAOeJN_BP_X8y8BjqA5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737497656</pqid></control><display><type>article</type><title>Controllable Size-Independent Three-Dimensional Inertial Focusing in High-Aspect-Ratio Asymmetric Serpentine Microchannels</title><source>MEDLINE</source><source>ACS Publications</source><creator>Ni, Chen ; Zhou, Zheng ; Zhu, Zhixian ; Jiang, Di ; Xiang, Nan</creator><creatorcontrib>Ni, Chen ; Zhou, Zheng ; Zhu, Zhixian ; Jiang, Di ; Xiang, Nan</creatorcontrib><description>High-throughput three-dimensional (3D) focusing of cells is the key prerequisite for enabling accurate microfluidic cell detection and analysis. In this work, we develop a high-aspect-ratio asymmetric serpentine (HARAS) microchannel for single-line inertial focusing of particles and cells at the 3D center of the channel. The mechanism of 3D focusing is explored by numerical simulation, and the focusing performances of differently sized particles are characterized experimentally at different flow rates. The results demonstrate the outstanding 3D single-line focusing capability of our HARAS microchannel. In addition, the phenomena of size-independent and position-controllable focusing over wide flow rates are observed. Finally, the applicability of our HARAS microchannel for processing real biological cells is validated by the 3D single-line focusing of A549 cells and MCF-7 cells. Our work overcomes the issue of off-centered focusing of most previous works and provides new insights into the 3D focusing in inertial microfluidics. The proposed HARAS microchannel is extremely easy for mass production and may provide a stable, high-throughput, and position-controllable scheme for subsequent single-cell detection and analysis.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c02361</identifier><identifier>PMID: 36315448</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Asymmetry ; Chemistry ; Computer Simulation ; Controllability ; Flow rates ; Flow velocity ; High aspect ratio ; Mass production ; Mathematical models ; Microchannels ; Microfluidic Analytical Techniques - methods ; Microfluidics</subject><ispartof>Analytical chemistry (Washington), 2022-11, Vol.94 (45), p.15639-15647</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a306t-d01831cae27affce16b5f309d4fb200bc1e66cdffbb37d01c185d24c72ce5b553</citedby><cites>FETCH-LOGICAL-a306t-d01831cae27affce16b5f309d4fb200bc1e66cdffbb37d01c185d24c72ce5b553</cites><orcidid>0000-0001-9803-4783</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c02361$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c02361$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36315448$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ni, Chen</creatorcontrib><creatorcontrib>Zhou, Zheng</creatorcontrib><creatorcontrib>Zhu, Zhixian</creatorcontrib><creatorcontrib>Jiang, Di</creatorcontrib><creatorcontrib>Xiang, Nan</creatorcontrib><title>Controllable Size-Independent Three-Dimensional Inertial Focusing in High-Aspect-Ratio Asymmetric Serpentine Microchannels</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>High-throughput three-dimensional (3D) focusing of cells is the key prerequisite for enabling accurate microfluidic cell detection and analysis. In this work, we develop a high-aspect-ratio asymmetric serpentine (HARAS) microchannel for single-line inertial focusing of particles and cells at the 3D center of the channel. The mechanism of 3D focusing is explored by numerical simulation, and the focusing performances of differently sized particles are characterized experimentally at different flow rates. The results demonstrate the outstanding 3D single-line focusing capability of our HARAS microchannel. In addition, the phenomena of size-independent and position-controllable focusing over wide flow rates are observed. Finally, the applicability of our HARAS microchannel for processing real biological cells is validated by the 3D single-line focusing of A549 cells and MCF-7 cells. Our work overcomes the issue of off-centered focusing of most previous works and provides new insights into the 3D focusing in inertial microfluidics. The proposed HARAS microchannel is extremely easy for mass production and may provide a stable, high-throughput, and position-controllable scheme for subsequent single-cell detection and analysis.</description><subject>Analytical chemistry</subject><subject>Asymmetry</subject><subject>Chemistry</subject><subject>Computer Simulation</subject><subject>Controllability</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>High aspect ratio</subject><subject>Mass production</subject><subject>Mathematical models</subject><subject>Microchannels</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFP3DAUhC0Egi3tP0AoEpdevH22Yyd7XC1QVqJCKvQcOc4La5TYi-0c4NfXdBcOHHrx8-GbGY2GkDMGcwac_dAmzrXTg9ngOOcGuFDsgMyY5EBVXfNDMgMAQXkFcEK-xPgEwBgwdUxOhBJMlmU9I68r71Lww6DbAYt7-4p07TrcYn5cKh42AZFe2hFdtD6nFWuHIdn8ufZmitY9FtYVN_ZxQ5dxiybR3zpZXyzjyzhiCtYU9xiyXbIOi1_WBG822jkc4ldy1Osh4rf9PSV_rq8eVjf09u7nerW8pVqASrQDVgtmNPJK971BplrZC1h0Zd9ygNYwVMp0fd-2osqwYbXseGkqblC2UopT8n3nuw3-ecKYmtFGg7myQz_Fhlc5pxRyITJ68Ql98lPItf9RVbmolFSZKndULhNjwL7ZBjvq8NIwaN62afI2zfs2zX6bLDvfm0_tiN2H6H2MDMAOeJN_BP_X8y8BjqA5</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Ni, Chen</creator><creator>Zhou, Zheng</creator><creator>Zhu, Zhixian</creator><creator>Jiang, Di</creator><creator>Xiang, Nan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9803-4783</orcidid></search><sort><creationdate>20221115</creationdate><title>Controllable Size-Independent Three-Dimensional Inertial Focusing in High-Aspect-Ratio Asymmetric Serpentine Microchannels</title><author>Ni, Chen ; Zhou, Zheng ; Zhu, Zhixian ; Jiang, Di ; Xiang, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a306t-d01831cae27affce16b5f309d4fb200bc1e66cdffbb37d01c185d24c72ce5b553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical chemistry</topic><topic>Asymmetry</topic><topic>Chemistry</topic><topic>Computer Simulation</topic><topic>Controllability</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>High aspect ratio</topic><topic>Mass production</topic><topic>Mathematical models</topic><topic>Microchannels</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ni, Chen</creatorcontrib><creatorcontrib>Zhou, Zheng</creatorcontrib><creatorcontrib>Zhu, Zhixian</creatorcontrib><creatorcontrib>Jiang, Di</creatorcontrib><creatorcontrib>Xiang, Nan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ni, Chen</au><au>Zhou, Zheng</au><au>Zhu, Zhixian</au><au>Jiang, Di</au><au>Xiang, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllable Size-Independent Three-Dimensional Inertial Focusing in High-Aspect-Ratio Asymmetric Serpentine Microchannels</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-11-15</date><risdate>2022</risdate><volume>94</volume><issue>45</issue><spage>15639</spage><epage>15647</epage><pages>15639-15647</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>High-throughput three-dimensional (3D) focusing of cells is the key prerequisite for enabling accurate microfluidic cell detection and analysis. In this work, we develop a high-aspect-ratio asymmetric serpentine (HARAS) microchannel for single-line inertial focusing of particles and cells at the 3D center of the channel. The mechanism of 3D focusing is explored by numerical simulation, and the focusing performances of differently sized particles are characterized experimentally at different flow rates. The results demonstrate the outstanding 3D single-line focusing capability of our HARAS microchannel. In addition, the phenomena of size-independent and position-controllable focusing over wide flow rates are observed. Finally, the applicability of our HARAS microchannel for processing real biological cells is validated by the 3D single-line focusing of A549 cells and MCF-7 cells. Our work overcomes the issue of off-centered focusing of most previous works and provides new insights into the 3D focusing in inertial microfluidics. The proposed HARAS microchannel is extremely easy for mass production and may provide a stable, high-throughput, and position-controllable scheme for subsequent single-cell detection and analysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36315448</pmid><doi>10.1021/acs.analchem.2c02361</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9803-4783</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2022-11, Vol.94 (45), p.15639-15647
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2730643593
source MEDLINE; ACS Publications
subjects Analytical chemistry
Asymmetry
Chemistry
Computer Simulation
Controllability
Flow rates
Flow velocity
High aspect ratio
Mass production
Mathematical models
Microchannels
Microfluidic Analytical Techniques - methods
Microfluidics
title Controllable Size-Independent Three-Dimensional Inertial Focusing in High-Aspect-Ratio Asymmetric Serpentine Microchannels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllable%20Size-Independent%20Three-Dimensional%20Inertial%20Focusing%20in%20High-Aspect-Ratio%20Asymmetric%20Serpentine%20Microchannels&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Ni,%20Chen&rft.date=2022-11-15&rft.volume=94&rft.issue=45&rft.spage=15639&rft.epage=15647&rft.pages=15639-15647&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c02361&rft_dat=%3Cproquest_cross%3E2730643593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737497656&rft_id=info:pmid/36315448&rfr_iscdi=true