Glucagon induces the hepatic expression of inflammatory markers in vitro and in vivo

Glucagon exerts multiple hepatic actions, including stimulation of glycogenolysis/gluconeogenesis. The liver plays a crucial role in chronic inflammation by synthesizing proinflammatory molecules, which are thought to contribute to insulin resistance and hyperglycaemia. Whether glucagon affects hepa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes, obesity & metabolism obesity & metabolism, 2023-02, Vol.25 (2), p.556-569
Hauptverfasser: Andreozzi, Francesco, Di Fatta, Concetta, Spiga, Rosangela, Mannino, Gaia Chiara, Mancuso, Elettra, Averta, Carolina, De Caro, Carmen, Tallarico, Martina, Leo, Antonio, Citraro, Rita, Russo, Emilio, De Sarro, Giovambattista, Sesti, Giorgio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 569
container_issue 2
container_start_page 556
container_title Diabetes, obesity & metabolism
container_volume 25
creator Andreozzi, Francesco
Di Fatta, Concetta
Spiga, Rosangela
Mannino, Gaia Chiara
Mancuso, Elettra
Averta, Carolina
De Caro, Carmen
Tallarico, Martina
Leo, Antonio
Citraro, Rita
Russo, Emilio
De Sarro, Giovambattista
Sesti, Giorgio
description Glucagon exerts multiple hepatic actions, including stimulation of glycogenolysis/gluconeogenesis. The liver plays a crucial role in chronic inflammation by synthesizing proinflammatory molecules, which are thought to contribute to insulin resistance and hyperglycaemia. Whether glucagon affects hepatic expression of proinflammatory cytokines and acute‐phase reactants is unknown. Herein, we report a positive relationship between fasting glucagon levels and circulating interleukin (IL)‐1β (r = 0.252, p = .042), IL‐6 (r = 0.230, p = .026), fibrinogen (r = 0.193, p = .031), complement component 3 (r = 0.227, p = .024) and high sensitivity C‐reactive protein (r = 0.230, p = .012) in individuals without diabetes. In CD1 mice, 4‐week continuous treatment with glucagon induced a significant increase in circulating IL‐1β (p = .02), and IL‐6 (p = .001), which was countered by the contingent administration of the glucagon receptor antagonist, GRA‐II. Consistent with these results, we detected a significant increase in the hepatic activation of inflammatory pathways, such as expression of NLRP3 (p 
doi_str_mv 10.1111/dom.14902
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2730319734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760023180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3532-2630cd9b5849add591f2d60f13f46a11bccaf1a8154051c5002f1d0005551d533</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUw8AdQJBYY0vpiOx8jKlCQQF3KHLn-oClJHOyk0H-PaQoDEl7sOz96dPcidA54DP5MpKnGQDMcHaAh0JiEQKL4cPeOwtT3B-jEuTXGmJI0OUYDEhPMaEKHaDErO8FfTR0UteyEckG7UsFKNbwtRKA-G6ucK_y30Z7QJa8q3hq7DSpu35R1vhlsitaagNeyLzbmFB1pXjp1tr9H6OX-bjF9CJ_ms8fpzVMoCCNRGPkphMyWLKUZl5JloCMZYw1E05gDLIXgGngKjGIGgmEcaZB-C8YYSEbICF313saa9065Nq8KJ1RZ8lqZzuVRQjCBLCHUo5d_0LXpbO2n81TszQRS7KnrnhLWOGeVzhtb-E23OeD8O-rcR53vovbsxd7YLSslf8mfbD0w6YGPolTb_0357fy5V34Bsp-Gew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760023180</pqid></control><display><type>article</type><title>Glucagon induces the hepatic expression of inflammatory markers in vitro and in vivo</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Andreozzi, Francesco ; Di Fatta, Concetta ; Spiga, Rosangela ; Mannino, Gaia Chiara ; Mancuso, Elettra ; Averta, Carolina ; De Caro, Carmen ; Tallarico, Martina ; Leo, Antonio ; Citraro, Rita ; Russo, Emilio ; De Sarro, Giovambattista ; Sesti, Giorgio</creator><creatorcontrib>Andreozzi, Francesco ; Di Fatta, Concetta ; Spiga, Rosangela ; Mannino, Gaia Chiara ; Mancuso, Elettra ; Averta, Carolina ; De Caro, Carmen ; Tallarico, Martina ; Leo, Antonio ; Citraro, Rita ; Russo, Emilio ; De Sarro, Giovambattista ; Sesti, Giorgio</creatorcontrib><description><![CDATA[Glucagon exerts multiple hepatic actions, including stimulation of glycogenolysis/gluconeogenesis. The liver plays a crucial role in chronic inflammation by synthesizing proinflammatory molecules, which are thought to contribute to insulin resistance and hyperglycaemia. Whether glucagon affects hepatic expression of proinflammatory cytokines and acute‐phase reactants is unknown. Herein, we report a positive relationship between fasting glucagon levels and circulating interleukin (IL)‐1β (r = 0.252, p = .042), IL‐6 (r = 0.230, p = .026), fibrinogen (r = 0.193, p = .031), complement component 3 (r = 0.227, p = .024) and high sensitivity C‐reactive protein (r = 0.230, p = .012) in individuals without diabetes. In CD1 mice, 4‐week continuous treatment with glucagon induced a significant increase in circulating IL‐1β (p = .02), and IL‐6 (p = .001), which was countered by the contingent administration of the glucagon receptor antagonist, GRA‐II. Consistent with these results, we detected a significant increase in the hepatic activation of inflammatory pathways, such as expression of NLRP3 (p < .02), and the phosphorylation of nuclear factor kappaB (NF‐κB; p < .02) and STAT3 (p < .01). In HepG2 cells, we found that glucagon dose‐dependently stimulated the expression of IL‐1β (p < .002), IL‐6 (p < .002), fibrinogen (p < .01), complement component 3 (p < .01) and C‐reactive protein (p < .01), stimulated the activation of NLRP3 inflammasome (p < .01) and caspase‐1 (p < .05), induced the phosphorylation of TRAF2 (p < .01), NF‐κB (p < .01) and STAT3 (p < .01). Preincubating cells with GRA‐II inhibited the ability of glucagon to induce an inflammatory response. Using HepaRG cells, we confirmed the dose‐dependent ability of glucagon to stimulate the expression of NLRP3, the phosphorylation of NF‐κB and STAT3, in the absence of GRA‐II. These results suggest that glucagon has proinflammatory effects that may participate in the pathogenesis of hyperglycaemia and unfavourable cardiometabolic risk profile.]]></description><identifier>ISSN: 1462-8902</identifier><identifier>EISSN: 1463-1326</identifier><identifier>DOI: 10.1111/dom.14902</identifier><identifier>PMID: 36305474</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Caspase ; Complement C3 - pharmacology ; cytokines ; Diabetes mellitus ; Fibrinogen ; Glucagon ; Glucagon - pharmacology ; Gluconeogenesis ; Hyperglycemia ; Inflammasomes ; Inflammasomes - metabolism ; Inflammation ; Insulin ; Insulin resistance ; Interleukin 6 ; Interleukin-1beta - metabolism ; Interleukin-1beta - pharmacology ; Liver ; Liver - metabolism ; liver inflammation ; low‐grade inflammation ; Mice ; NF-kappa B - metabolism ; NF-kappa B - pharmacology ; NF‐κB pathway ; NLR Family, Pyrin Domain-Containing 3 Protein - metabolism ; NLRP3 inflammasome ; Phosphorylation ; Signal Transduction ; Stat3 protein ; TRAF2 protein</subject><ispartof>Diabetes, obesity &amp; metabolism, 2023-02, Vol.25 (2), p.556-569</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3532-2630cd9b5849add591f2d60f13f46a11bccaf1a8154051c5002f1d0005551d533</citedby><cites>FETCH-LOGICAL-c3532-2630cd9b5849add591f2d60f13f46a11bccaf1a8154051c5002f1d0005551d533</cites><orcidid>0000-0002-6341-4572 ; 0000-0001-9375-1513 ; 0000-0002-3331-6568 ; 0000-0002-0562-9196 ; 0000-0002-1618-7688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fdom.14902$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fdom.14902$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36305474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andreozzi, Francesco</creatorcontrib><creatorcontrib>Di Fatta, Concetta</creatorcontrib><creatorcontrib>Spiga, Rosangela</creatorcontrib><creatorcontrib>Mannino, Gaia Chiara</creatorcontrib><creatorcontrib>Mancuso, Elettra</creatorcontrib><creatorcontrib>Averta, Carolina</creatorcontrib><creatorcontrib>De Caro, Carmen</creatorcontrib><creatorcontrib>Tallarico, Martina</creatorcontrib><creatorcontrib>Leo, Antonio</creatorcontrib><creatorcontrib>Citraro, Rita</creatorcontrib><creatorcontrib>Russo, Emilio</creatorcontrib><creatorcontrib>De Sarro, Giovambattista</creatorcontrib><creatorcontrib>Sesti, Giorgio</creatorcontrib><title>Glucagon induces the hepatic expression of inflammatory markers in vitro and in vivo</title><title>Diabetes, obesity &amp; metabolism</title><addtitle>Diabetes Obes Metab</addtitle><description><![CDATA[Glucagon exerts multiple hepatic actions, including stimulation of glycogenolysis/gluconeogenesis. The liver plays a crucial role in chronic inflammation by synthesizing proinflammatory molecules, which are thought to contribute to insulin resistance and hyperglycaemia. Whether glucagon affects hepatic expression of proinflammatory cytokines and acute‐phase reactants is unknown. Herein, we report a positive relationship between fasting glucagon levels and circulating interleukin (IL)‐1β (r = 0.252, p = .042), IL‐6 (r = 0.230, p = .026), fibrinogen (r = 0.193, p = .031), complement component 3 (r = 0.227, p = .024) and high sensitivity C‐reactive protein (r = 0.230, p = .012) in individuals without diabetes. In CD1 mice, 4‐week continuous treatment with glucagon induced a significant increase in circulating IL‐1β (p = .02), and IL‐6 (p = .001), which was countered by the contingent administration of the glucagon receptor antagonist, GRA‐II. Consistent with these results, we detected a significant increase in the hepatic activation of inflammatory pathways, such as expression of NLRP3 (p < .02), and the phosphorylation of nuclear factor kappaB (NF‐κB; p < .02) and STAT3 (p < .01). In HepG2 cells, we found that glucagon dose‐dependently stimulated the expression of IL‐1β (p < .002), IL‐6 (p < .002), fibrinogen (p < .01), complement component 3 (p < .01) and C‐reactive protein (p < .01), stimulated the activation of NLRP3 inflammasome (p < .01) and caspase‐1 (p < .05), induced the phosphorylation of TRAF2 (p < .01), NF‐κB (p < .01) and STAT3 (p < .01). Preincubating cells with GRA‐II inhibited the ability of glucagon to induce an inflammatory response. Using HepaRG cells, we confirmed the dose‐dependent ability of glucagon to stimulate the expression of NLRP3, the phosphorylation of NF‐κB and STAT3, in the absence of GRA‐II. These results suggest that glucagon has proinflammatory effects that may participate in the pathogenesis of hyperglycaemia and unfavourable cardiometabolic risk profile.]]></description><subject>Animals</subject><subject>Caspase</subject><subject>Complement C3 - pharmacology</subject><subject>cytokines</subject><subject>Diabetes mellitus</subject><subject>Fibrinogen</subject><subject>Glucagon</subject><subject>Glucagon - pharmacology</subject><subject>Gluconeogenesis</subject><subject>Hyperglycemia</subject><subject>Inflammasomes</subject><subject>Inflammasomes - metabolism</subject><subject>Inflammation</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Interleukin 6</subject><subject>Interleukin-1beta - metabolism</subject><subject>Interleukin-1beta - pharmacology</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>liver inflammation</subject><subject>low‐grade inflammation</subject><subject>Mice</subject><subject>NF-kappa B - metabolism</subject><subject>NF-kappa B - pharmacology</subject><subject>NF‐κB pathway</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</subject><subject>NLRP3 inflammasome</subject><subject>Phosphorylation</subject><subject>Signal Transduction</subject><subject>Stat3 protein</subject><subject>TRAF2 protein</subject><issn>1462-8902</issn><issn>1463-1326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1PwzAQhi0EoqUw8AdQJBYY0vpiOx8jKlCQQF3KHLn-oClJHOyk0H-PaQoDEl7sOz96dPcidA54DP5MpKnGQDMcHaAh0JiEQKL4cPeOwtT3B-jEuTXGmJI0OUYDEhPMaEKHaDErO8FfTR0UteyEckG7UsFKNbwtRKA-G6ucK_y30Z7QJa8q3hq7DSpu35R1vhlsitaagNeyLzbmFB1pXjp1tr9H6OX-bjF9CJ_ms8fpzVMoCCNRGPkphMyWLKUZl5JloCMZYw1E05gDLIXgGngKjGIGgmEcaZB-C8YYSEbICF313saa9065Nq8KJ1RZ8lqZzuVRQjCBLCHUo5d_0LXpbO2n81TszQRS7KnrnhLWOGeVzhtb-E23OeD8O-rcR53vovbsxd7YLSslf8mfbD0w6YGPolTb_0357fy5V34Bsp-Gew</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Andreozzi, Francesco</creator><creator>Di Fatta, Concetta</creator><creator>Spiga, Rosangela</creator><creator>Mannino, Gaia Chiara</creator><creator>Mancuso, Elettra</creator><creator>Averta, Carolina</creator><creator>De Caro, Carmen</creator><creator>Tallarico, Martina</creator><creator>Leo, Antonio</creator><creator>Citraro, Rita</creator><creator>Russo, Emilio</creator><creator>De Sarro, Giovambattista</creator><creator>Sesti, Giorgio</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6341-4572</orcidid><orcidid>https://orcid.org/0000-0001-9375-1513</orcidid><orcidid>https://orcid.org/0000-0002-3331-6568</orcidid><orcidid>https://orcid.org/0000-0002-0562-9196</orcidid><orcidid>https://orcid.org/0000-0002-1618-7688</orcidid></search><sort><creationdate>202302</creationdate><title>Glucagon induces the hepatic expression of inflammatory markers in vitro and in vivo</title><author>Andreozzi, Francesco ; Di Fatta, Concetta ; Spiga, Rosangela ; Mannino, Gaia Chiara ; Mancuso, Elettra ; Averta, Carolina ; De Caro, Carmen ; Tallarico, Martina ; Leo, Antonio ; Citraro, Rita ; Russo, Emilio ; De Sarro, Giovambattista ; Sesti, Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3532-2630cd9b5849add591f2d60f13f46a11bccaf1a8154051c5002f1d0005551d533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Caspase</topic><topic>Complement C3 - pharmacology</topic><topic>cytokines</topic><topic>Diabetes mellitus</topic><topic>Fibrinogen</topic><topic>Glucagon</topic><topic>Glucagon - pharmacology</topic><topic>Gluconeogenesis</topic><topic>Hyperglycemia</topic><topic>Inflammasomes</topic><topic>Inflammasomes - metabolism</topic><topic>Inflammation</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Interleukin 6</topic><topic>Interleukin-1beta - metabolism</topic><topic>Interleukin-1beta - pharmacology</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>liver inflammation</topic><topic>low‐grade inflammation</topic><topic>Mice</topic><topic>NF-kappa B - metabolism</topic><topic>NF-kappa B - pharmacology</topic><topic>NF‐κB pathway</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</topic><topic>NLRP3 inflammasome</topic><topic>Phosphorylation</topic><topic>Signal Transduction</topic><topic>Stat3 protein</topic><topic>TRAF2 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreozzi, Francesco</creatorcontrib><creatorcontrib>Di Fatta, Concetta</creatorcontrib><creatorcontrib>Spiga, Rosangela</creatorcontrib><creatorcontrib>Mannino, Gaia Chiara</creatorcontrib><creatorcontrib>Mancuso, Elettra</creatorcontrib><creatorcontrib>Averta, Carolina</creatorcontrib><creatorcontrib>De Caro, Carmen</creatorcontrib><creatorcontrib>Tallarico, Martina</creatorcontrib><creatorcontrib>Leo, Antonio</creatorcontrib><creatorcontrib>Citraro, Rita</creatorcontrib><creatorcontrib>Russo, Emilio</creatorcontrib><creatorcontrib>De Sarro, Giovambattista</creatorcontrib><creatorcontrib>Sesti, Giorgio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes, obesity &amp; metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreozzi, Francesco</au><au>Di Fatta, Concetta</au><au>Spiga, Rosangela</au><au>Mannino, Gaia Chiara</au><au>Mancuso, Elettra</au><au>Averta, Carolina</au><au>De Caro, Carmen</au><au>Tallarico, Martina</au><au>Leo, Antonio</au><au>Citraro, Rita</au><au>Russo, Emilio</au><au>De Sarro, Giovambattista</au><au>Sesti, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucagon induces the hepatic expression of inflammatory markers in vitro and in vivo</atitle><jtitle>Diabetes, obesity &amp; metabolism</jtitle><addtitle>Diabetes Obes Metab</addtitle><date>2023-02</date><risdate>2023</risdate><volume>25</volume><issue>2</issue><spage>556</spage><epage>569</epage><pages>556-569</pages><issn>1462-8902</issn><eissn>1463-1326</eissn><abstract><![CDATA[Glucagon exerts multiple hepatic actions, including stimulation of glycogenolysis/gluconeogenesis. The liver plays a crucial role in chronic inflammation by synthesizing proinflammatory molecules, which are thought to contribute to insulin resistance and hyperglycaemia. Whether glucagon affects hepatic expression of proinflammatory cytokines and acute‐phase reactants is unknown. Herein, we report a positive relationship between fasting glucagon levels and circulating interleukin (IL)‐1β (r = 0.252, p = .042), IL‐6 (r = 0.230, p = .026), fibrinogen (r = 0.193, p = .031), complement component 3 (r = 0.227, p = .024) and high sensitivity C‐reactive protein (r = 0.230, p = .012) in individuals without diabetes. In CD1 mice, 4‐week continuous treatment with glucagon induced a significant increase in circulating IL‐1β (p = .02), and IL‐6 (p = .001), which was countered by the contingent administration of the glucagon receptor antagonist, GRA‐II. Consistent with these results, we detected a significant increase in the hepatic activation of inflammatory pathways, such as expression of NLRP3 (p < .02), and the phosphorylation of nuclear factor kappaB (NF‐κB; p < .02) and STAT3 (p < .01). In HepG2 cells, we found that glucagon dose‐dependently stimulated the expression of IL‐1β (p < .002), IL‐6 (p < .002), fibrinogen (p < .01), complement component 3 (p < .01) and C‐reactive protein (p < .01), stimulated the activation of NLRP3 inflammasome (p < .01) and caspase‐1 (p < .05), induced the phosphorylation of TRAF2 (p < .01), NF‐κB (p < .01) and STAT3 (p < .01). Preincubating cells with GRA‐II inhibited the ability of glucagon to induce an inflammatory response. Using HepaRG cells, we confirmed the dose‐dependent ability of glucagon to stimulate the expression of NLRP3, the phosphorylation of NF‐κB and STAT3, in the absence of GRA‐II. These results suggest that glucagon has proinflammatory effects that may participate in the pathogenesis of hyperglycaemia and unfavourable cardiometabolic risk profile.]]></abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>36305474</pmid><doi>10.1111/dom.14902</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6341-4572</orcidid><orcidid>https://orcid.org/0000-0001-9375-1513</orcidid><orcidid>https://orcid.org/0000-0002-3331-6568</orcidid><orcidid>https://orcid.org/0000-0002-0562-9196</orcidid><orcidid>https://orcid.org/0000-0002-1618-7688</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1462-8902
ispartof Diabetes, obesity & metabolism, 2023-02, Vol.25 (2), p.556-569
issn 1462-8902
1463-1326
language eng
recordid cdi_proquest_miscellaneous_2730319734
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Caspase
Complement C3 - pharmacology
cytokines
Diabetes mellitus
Fibrinogen
Glucagon
Glucagon - pharmacology
Gluconeogenesis
Hyperglycemia
Inflammasomes
Inflammasomes - metabolism
Inflammation
Insulin
Insulin resistance
Interleukin 6
Interleukin-1beta - metabolism
Interleukin-1beta - pharmacology
Liver
Liver - metabolism
liver inflammation
low‐grade inflammation
Mice
NF-kappa B - metabolism
NF-kappa B - pharmacology
NF‐κB pathway
NLR Family, Pyrin Domain-Containing 3 Protein - metabolism
NLRP3 inflammasome
Phosphorylation
Signal Transduction
Stat3 protein
TRAF2 protein
title Glucagon induces the hepatic expression of inflammatory markers in vitro and in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucagon%20induces%20the%20hepatic%20expression%20of%20inflammatory%20markers%20in%20vitro%20and%20in%20vivo&rft.jtitle=Diabetes,%20obesity%20&%20metabolism&rft.au=Andreozzi,%20Francesco&rft.date=2023-02&rft.volume=25&rft.issue=2&rft.spage=556&rft.epage=569&rft.pages=556-569&rft.issn=1462-8902&rft.eissn=1463-1326&rft_id=info:doi/10.1111/dom.14902&rft_dat=%3Cproquest_cross%3E2760023180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760023180&rft_id=info:pmid/36305474&rfr_iscdi=true