Glucagon induces the hepatic expression of inflammatory markers in vitro and in vivo
Glucagon exerts multiple hepatic actions, including stimulation of glycogenolysis/gluconeogenesis. The liver plays a crucial role in chronic inflammation by synthesizing proinflammatory molecules, which are thought to contribute to insulin resistance and hyperglycaemia. Whether glucagon affects hepa...
Gespeichert in:
Veröffentlicht in: | Diabetes, obesity & metabolism obesity & metabolism, 2023-02, Vol.25 (2), p.556-569 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 569 |
---|---|
container_issue | 2 |
container_start_page | 556 |
container_title | Diabetes, obesity & metabolism |
container_volume | 25 |
creator | Andreozzi, Francesco Di Fatta, Concetta Spiga, Rosangela Mannino, Gaia Chiara Mancuso, Elettra Averta, Carolina De Caro, Carmen Tallarico, Martina Leo, Antonio Citraro, Rita Russo, Emilio De Sarro, Giovambattista Sesti, Giorgio |
description | Glucagon exerts multiple hepatic actions, including stimulation of glycogenolysis/gluconeogenesis. The liver plays a crucial role in chronic inflammation by synthesizing proinflammatory molecules, which are thought to contribute to insulin resistance and hyperglycaemia. Whether glucagon affects hepatic expression of proinflammatory cytokines and acute‐phase reactants is unknown. Herein, we report a positive relationship between fasting glucagon levels and circulating interleukin (IL)‐1β (r = 0.252, p = .042), IL‐6 (r = 0.230, p = .026), fibrinogen (r = 0.193, p = .031), complement component 3 (r = 0.227, p = .024) and high sensitivity C‐reactive protein (r = 0.230, p = .012) in individuals without diabetes. In CD1 mice, 4‐week continuous treatment with glucagon induced a significant increase in circulating IL‐1β (p = .02), and IL‐6 (p = .001), which was countered by the contingent administration of the glucagon receptor antagonist, GRA‐II. Consistent with these results, we detected a significant increase in the hepatic activation of inflammatory pathways, such as expression of NLRP3 (p |
doi_str_mv | 10.1111/dom.14902 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2730319734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760023180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3532-2630cd9b5849add591f2d60f13f46a11bccaf1a8154051c5002f1d0005551d533</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUw8AdQJBYY0vpiOx8jKlCQQF3KHLn-oClJHOyk0H-PaQoDEl7sOz96dPcidA54DP5MpKnGQDMcHaAh0JiEQKL4cPeOwtT3B-jEuTXGmJI0OUYDEhPMaEKHaDErO8FfTR0UteyEckG7UsFKNbwtRKA-G6ucK_y30Z7QJa8q3hq7DSpu35R1vhlsitaagNeyLzbmFB1pXjp1tr9H6OX-bjF9CJ_ms8fpzVMoCCNRGPkphMyWLKUZl5JloCMZYw1E05gDLIXgGngKjGIGgmEcaZB-C8YYSEbICF313saa9065Nq8KJ1RZ8lqZzuVRQjCBLCHUo5d_0LXpbO2n81TszQRS7KnrnhLWOGeVzhtb-E23OeD8O-rcR53vovbsxd7YLSslf8mfbD0w6YGPolTb_0357fy5V34Bsp-Gew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760023180</pqid></control><display><type>article</type><title>Glucagon induces the hepatic expression of inflammatory markers in vitro and in vivo</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Andreozzi, Francesco ; Di Fatta, Concetta ; Spiga, Rosangela ; Mannino, Gaia Chiara ; Mancuso, Elettra ; Averta, Carolina ; De Caro, Carmen ; Tallarico, Martina ; Leo, Antonio ; Citraro, Rita ; Russo, Emilio ; De Sarro, Giovambattista ; Sesti, Giorgio</creator><creatorcontrib>Andreozzi, Francesco ; Di Fatta, Concetta ; Spiga, Rosangela ; Mannino, Gaia Chiara ; Mancuso, Elettra ; Averta, Carolina ; De Caro, Carmen ; Tallarico, Martina ; Leo, Antonio ; Citraro, Rita ; Russo, Emilio ; De Sarro, Giovambattista ; Sesti, Giorgio</creatorcontrib><description><![CDATA[Glucagon exerts multiple hepatic actions, including stimulation of glycogenolysis/gluconeogenesis. The liver plays a crucial role in chronic inflammation by synthesizing proinflammatory molecules, which are thought to contribute to insulin resistance and hyperglycaemia. Whether glucagon affects hepatic expression of proinflammatory cytokines and acute‐phase reactants is unknown. Herein, we report a positive relationship between fasting glucagon levels and circulating interleukin (IL)‐1β (r = 0.252, p = .042), IL‐6 (r = 0.230, p = .026), fibrinogen (r = 0.193, p = .031), complement component 3 (r = 0.227, p = .024) and high sensitivity C‐reactive protein (r = 0.230, p = .012) in individuals without diabetes. In CD1 mice, 4‐week continuous treatment with glucagon induced a significant increase in circulating IL‐1β (p = .02), and IL‐6 (p = .001), which was countered by the contingent administration of the glucagon receptor antagonist, GRA‐II. Consistent with these results, we detected a significant increase in the hepatic activation of inflammatory pathways, such as expression of NLRP3 (p < .02), and the phosphorylation of nuclear factor kappaB (NF‐κB; p < .02) and STAT3 (p < .01). In HepG2 cells, we found that glucagon dose‐dependently stimulated the expression of IL‐1β (p < .002), IL‐6 (p < .002), fibrinogen (p < .01), complement component 3 (p < .01) and C‐reactive protein (p < .01), stimulated the activation of NLRP3 inflammasome (p < .01) and caspase‐1 (p < .05), induced the phosphorylation of TRAF2 (p < .01), NF‐κB (p < .01) and STAT3 (p < .01). Preincubating cells with GRA‐II inhibited the ability of glucagon to induce an inflammatory response. Using HepaRG cells, we confirmed the dose‐dependent ability of glucagon to stimulate the expression of NLRP3, the phosphorylation of NF‐κB and STAT3, in the absence of GRA‐II. These results suggest that glucagon has proinflammatory effects that may participate in the pathogenesis of hyperglycaemia and unfavourable cardiometabolic risk profile.]]></description><identifier>ISSN: 1462-8902</identifier><identifier>EISSN: 1463-1326</identifier><identifier>DOI: 10.1111/dom.14902</identifier><identifier>PMID: 36305474</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Caspase ; Complement C3 - pharmacology ; cytokines ; Diabetes mellitus ; Fibrinogen ; Glucagon ; Glucagon - pharmacology ; Gluconeogenesis ; Hyperglycemia ; Inflammasomes ; Inflammasomes - metabolism ; Inflammation ; Insulin ; Insulin resistance ; Interleukin 6 ; Interleukin-1beta - metabolism ; Interleukin-1beta - pharmacology ; Liver ; Liver - metabolism ; liver inflammation ; low‐grade inflammation ; Mice ; NF-kappa B - metabolism ; NF-kappa B - pharmacology ; NF‐κB pathway ; NLR Family, Pyrin Domain-Containing 3 Protein - metabolism ; NLRP3 inflammasome ; Phosphorylation ; Signal Transduction ; Stat3 protein ; TRAF2 protein</subject><ispartof>Diabetes, obesity & metabolism, 2023-02, Vol.25 (2), p.556-569</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2023 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3532-2630cd9b5849add591f2d60f13f46a11bccaf1a8154051c5002f1d0005551d533</citedby><cites>FETCH-LOGICAL-c3532-2630cd9b5849add591f2d60f13f46a11bccaf1a8154051c5002f1d0005551d533</cites><orcidid>0000-0002-6341-4572 ; 0000-0001-9375-1513 ; 0000-0002-3331-6568 ; 0000-0002-0562-9196 ; 0000-0002-1618-7688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fdom.14902$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fdom.14902$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36305474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andreozzi, Francesco</creatorcontrib><creatorcontrib>Di Fatta, Concetta</creatorcontrib><creatorcontrib>Spiga, Rosangela</creatorcontrib><creatorcontrib>Mannino, Gaia Chiara</creatorcontrib><creatorcontrib>Mancuso, Elettra</creatorcontrib><creatorcontrib>Averta, Carolina</creatorcontrib><creatorcontrib>De Caro, Carmen</creatorcontrib><creatorcontrib>Tallarico, Martina</creatorcontrib><creatorcontrib>Leo, Antonio</creatorcontrib><creatorcontrib>Citraro, Rita</creatorcontrib><creatorcontrib>Russo, Emilio</creatorcontrib><creatorcontrib>De Sarro, Giovambattista</creatorcontrib><creatorcontrib>Sesti, Giorgio</creatorcontrib><title>Glucagon induces the hepatic expression of inflammatory markers in vitro and in vivo</title><title>Diabetes, obesity & metabolism</title><addtitle>Diabetes Obes Metab</addtitle><description><![CDATA[Glucagon exerts multiple hepatic actions, including stimulation of glycogenolysis/gluconeogenesis. The liver plays a crucial role in chronic inflammation by synthesizing proinflammatory molecules, which are thought to contribute to insulin resistance and hyperglycaemia. Whether glucagon affects hepatic expression of proinflammatory cytokines and acute‐phase reactants is unknown. Herein, we report a positive relationship between fasting glucagon levels and circulating interleukin (IL)‐1β (r = 0.252, p = .042), IL‐6 (r = 0.230, p = .026), fibrinogen (r = 0.193, p = .031), complement component 3 (r = 0.227, p = .024) and high sensitivity C‐reactive protein (r = 0.230, p = .012) in individuals without diabetes. In CD1 mice, 4‐week continuous treatment with glucagon induced a significant increase in circulating IL‐1β (p = .02), and IL‐6 (p = .001), which was countered by the contingent administration of the glucagon receptor antagonist, GRA‐II. Consistent with these results, we detected a significant increase in the hepatic activation of inflammatory pathways, such as expression of NLRP3 (p < .02), and the phosphorylation of nuclear factor kappaB (NF‐κB; p < .02) and STAT3 (p < .01). In HepG2 cells, we found that glucagon dose‐dependently stimulated the expression of IL‐1β (p < .002), IL‐6 (p < .002), fibrinogen (p < .01), complement component 3 (p < .01) and C‐reactive protein (p < .01), stimulated the activation of NLRP3 inflammasome (p < .01) and caspase‐1 (p < .05), induced the phosphorylation of TRAF2 (p < .01), NF‐κB (p < .01) and STAT3 (p < .01). Preincubating cells with GRA‐II inhibited the ability of glucagon to induce an inflammatory response. Using HepaRG cells, we confirmed the dose‐dependent ability of glucagon to stimulate the expression of NLRP3, the phosphorylation of NF‐κB and STAT3, in the absence of GRA‐II. These results suggest that glucagon has proinflammatory effects that may participate in the pathogenesis of hyperglycaemia and unfavourable cardiometabolic risk profile.]]></description><subject>Animals</subject><subject>Caspase</subject><subject>Complement C3 - pharmacology</subject><subject>cytokines</subject><subject>Diabetes mellitus</subject><subject>Fibrinogen</subject><subject>Glucagon</subject><subject>Glucagon - pharmacology</subject><subject>Gluconeogenesis</subject><subject>Hyperglycemia</subject><subject>Inflammasomes</subject><subject>Inflammasomes - metabolism</subject><subject>Inflammation</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Interleukin 6</subject><subject>Interleukin-1beta - metabolism</subject><subject>Interleukin-1beta - pharmacology</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>liver inflammation</subject><subject>low‐grade inflammation</subject><subject>Mice</subject><subject>NF-kappa B - metabolism</subject><subject>NF-kappa B - pharmacology</subject><subject>NF‐κB pathway</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</subject><subject>NLRP3 inflammasome</subject><subject>Phosphorylation</subject><subject>Signal Transduction</subject><subject>Stat3 protein</subject><subject>TRAF2 protein</subject><issn>1462-8902</issn><issn>1463-1326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1PwzAQhi0EoqUw8AdQJBYY0vpiOx8jKlCQQF3KHLn-oClJHOyk0H-PaQoDEl7sOz96dPcidA54DP5MpKnGQDMcHaAh0JiEQKL4cPeOwtT3B-jEuTXGmJI0OUYDEhPMaEKHaDErO8FfTR0UteyEckG7UsFKNbwtRKA-G6ucK_y30Z7QJa8q3hq7DSpu35R1vhlsitaagNeyLzbmFB1pXjp1tr9H6OX-bjF9CJ_ms8fpzVMoCCNRGPkphMyWLKUZl5JloCMZYw1E05gDLIXgGngKjGIGgmEcaZB-C8YYSEbICF313saa9065Nq8KJ1RZ8lqZzuVRQjCBLCHUo5d_0LXpbO2n81TszQRS7KnrnhLWOGeVzhtb-E23OeD8O-rcR53vovbsxd7YLSslf8mfbD0w6YGPolTb_0357fy5V34Bsp-Gew</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Andreozzi, Francesco</creator><creator>Di Fatta, Concetta</creator><creator>Spiga, Rosangela</creator><creator>Mannino, Gaia Chiara</creator><creator>Mancuso, Elettra</creator><creator>Averta, Carolina</creator><creator>De Caro, Carmen</creator><creator>Tallarico, Martina</creator><creator>Leo, Antonio</creator><creator>Citraro, Rita</creator><creator>Russo, Emilio</creator><creator>De Sarro, Giovambattista</creator><creator>Sesti, Giorgio</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6341-4572</orcidid><orcidid>https://orcid.org/0000-0001-9375-1513</orcidid><orcidid>https://orcid.org/0000-0002-3331-6568</orcidid><orcidid>https://orcid.org/0000-0002-0562-9196</orcidid><orcidid>https://orcid.org/0000-0002-1618-7688</orcidid></search><sort><creationdate>202302</creationdate><title>Glucagon induces the hepatic expression of inflammatory markers in vitro and in vivo</title><author>Andreozzi, Francesco ; Di Fatta, Concetta ; Spiga, Rosangela ; Mannino, Gaia Chiara ; Mancuso, Elettra ; Averta, Carolina ; De Caro, Carmen ; Tallarico, Martina ; Leo, Antonio ; Citraro, Rita ; Russo, Emilio ; De Sarro, Giovambattista ; Sesti, Giorgio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3532-2630cd9b5849add591f2d60f13f46a11bccaf1a8154051c5002f1d0005551d533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Caspase</topic><topic>Complement C3 - pharmacology</topic><topic>cytokines</topic><topic>Diabetes mellitus</topic><topic>Fibrinogen</topic><topic>Glucagon</topic><topic>Glucagon - pharmacology</topic><topic>Gluconeogenesis</topic><topic>Hyperglycemia</topic><topic>Inflammasomes</topic><topic>Inflammasomes - metabolism</topic><topic>Inflammation</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Interleukin 6</topic><topic>Interleukin-1beta - metabolism</topic><topic>Interleukin-1beta - pharmacology</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>liver inflammation</topic><topic>low‐grade inflammation</topic><topic>Mice</topic><topic>NF-kappa B - metabolism</topic><topic>NF-kappa B - pharmacology</topic><topic>NF‐κB pathway</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</topic><topic>NLRP3 inflammasome</topic><topic>Phosphorylation</topic><topic>Signal Transduction</topic><topic>Stat3 protein</topic><topic>TRAF2 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreozzi, Francesco</creatorcontrib><creatorcontrib>Di Fatta, Concetta</creatorcontrib><creatorcontrib>Spiga, Rosangela</creatorcontrib><creatorcontrib>Mannino, Gaia Chiara</creatorcontrib><creatorcontrib>Mancuso, Elettra</creatorcontrib><creatorcontrib>Averta, Carolina</creatorcontrib><creatorcontrib>De Caro, Carmen</creatorcontrib><creatorcontrib>Tallarico, Martina</creatorcontrib><creatorcontrib>Leo, Antonio</creatorcontrib><creatorcontrib>Citraro, Rita</creatorcontrib><creatorcontrib>Russo, Emilio</creatorcontrib><creatorcontrib>De Sarro, Giovambattista</creatorcontrib><creatorcontrib>Sesti, Giorgio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes, obesity & metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreozzi, Francesco</au><au>Di Fatta, Concetta</au><au>Spiga, Rosangela</au><au>Mannino, Gaia Chiara</au><au>Mancuso, Elettra</au><au>Averta, Carolina</au><au>De Caro, Carmen</au><au>Tallarico, Martina</au><au>Leo, Antonio</au><au>Citraro, Rita</au><au>Russo, Emilio</au><au>De Sarro, Giovambattista</au><au>Sesti, Giorgio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucagon induces the hepatic expression of inflammatory markers in vitro and in vivo</atitle><jtitle>Diabetes, obesity & metabolism</jtitle><addtitle>Diabetes Obes Metab</addtitle><date>2023-02</date><risdate>2023</risdate><volume>25</volume><issue>2</issue><spage>556</spage><epage>569</epage><pages>556-569</pages><issn>1462-8902</issn><eissn>1463-1326</eissn><abstract><![CDATA[Glucagon exerts multiple hepatic actions, including stimulation of glycogenolysis/gluconeogenesis. The liver plays a crucial role in chronic inflammation by synthesizing proinflammatory molecules, which are thought to contribute to insulin resistance and hyperglycaemia. Whether glucagon affects hepatic expression of proinflammatory cytokines and acute‐phase reactants is unknown. Herein, we report a positive relationship between fasting glucagon levels and circulating interleukin (IL)‐1β (r = 0.252, p = .042), IL‐6 (r = 0.230, p = .026), fibrinogen (r = 0.193, p = .031), complement component 3 (r = 0.227, p = .024) and high sensitivity C‐reactive protein (r = 0.230, p = .012) in individuals without diabetes. In CD1 mice, 4‐week continuous treatment with glucagon induced a significant increase in circulating IL‐1β (p = .02), and IL‐6 (p = .001), which was countered by the contingent administration of the glucagon receptor antagonist, GRA‐II. Consistent with these results, we detected a significant increase in the hepatic activation of inflammatory pathways, such as expression of NLRP3 (p < .02), and the phosphorylation of nuclear factor kappaB (NF‐κB; p < .02) and STAT3 (p < .01). In HepG2 cells, we found that glucagon dose‐dependently stimulated the expression of IL‐1β (p < .002), IL‐6 (p < .002), fibrinogen (p < .01), complement component 3 (p < .01) and C‐reactive protein (p < .01), stimulated the activation of NLRP3 inflammasome (p < .01) and caspase‐1 (p < .05), induced the phosphorylation of TRAF2 (p < .01), NF‐κB (p < .01) and STAT3 (p < .01). Preincubating cells with GRA‐II inhibited the ability of glucagon to induce an inflammatory response. Using HepaRG cells, we confirmed the dose‐dependent ability of glucagon to stimulate the expression of NLRP3, the phosphorylation of NF‐κB and STAT3, in the absence of GRA‐II. These results suggest that glucagon has proinflammatory effects that may participate in the pathogenesis of hyperglycaemia and unfavourable cardiometabolic risk profile.]]></abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>36305474</pmid><doi>10.1111/dom.14902</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6341-4572</orcidid><orcidid>https://orcid.org/0000-0001-9375-1513</orcidid><orcidid>https://orcid.org/0000-0002-3331-6568</orcidid><orcidid>https://orcid.org/0000-0002-0562-9196</orcidid><orcidid>https://orcid.org/0000-0002-1618-7688</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-8902 |
ispartof | Diabetes, obesity & metabolism, 2023-02, Vol.25 (2), p.556-569 |
issn | 1462-8902 1463-1326 |
language | eng |
recordid | cdi_proquest_miscellaneous_2730319734 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Caspase Complement C3 - pharmacology cytokines Diabetes mellitus Fibrinogen Glucagon Glucagon - pharmacology Gluconeogenesis Hyperglycemia Inflammasomes Inflammasomes - metabolism Inflammation Insulin Insulin resistance Interleukin 6 Interleukin-1beta - metabolism Interleukin-1beta - pharmacology Liver Liver - metabolism liver inflammation low‐grade inflammation Mice NF-kappa B - metabolism NF-kappa B - pharmacology NF‐κB pathway NLR Family, Pyrin Domain-Containing 3 Protein - metabolism NLRP3 inflammasome Phosphorylation Signal Transduction Stat3 protein TRAF2 protein |
title | Glucagon induces the hepatic expression of inflammatory markers in vitro and in vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucagon%20induces%20the%20hepatic%20expression%20of%20inflammatory%20markers%20in%20vitro%20and%20in%20vivo&rft.jtitle=Diabetes,%20obesity%20&%20metabolism&rft.au=Andreozzi,%20Francesco&rft.date=2023-02&rft.volume=25&rft.issue=2&rft.spage=556&rft.epage=569&rft.pages=556-569&rft.issn=1462-8902&rft.eissn=1463-1326&rft_id=info:doi/10.1111/dom.14902&rft_dat=%3Cproquest_cross%3E2760023180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760023180&rft_id=info:pmid/36305474&rfr_iscdi=true |