A developmental atlas of somatosensory diversification and maturation in the dorsal root ganglia by single-cell mass cytometry
Precisely controlled development of the somatosensory system is essential for detecting pain, itch, temperature, mechanical touch and body position. To investigate the protein-level changes that occur during somatosensory development, we performed single-cell mass cytometry on dorsal root ganglia fr...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2022-11, Vol.25 (11), p.1543-1558 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1558 |
---|---|
container_issue | 11 |
container_start_page | 1543 |
container_title | Nature neuroscience |
container_volume | 25 |
creator | Keeler, Austin B. Van Deusen, Amy L. Gadani, Irene C. Williams, Corey M. Goggin, Sarah M. Hirt, Ashley K. Vradenburgh, Shayla A. Fread, Kristen I. Puleo, Emily A. Jin, Lucy Calhan, O. Yipkin Deppmann, Christopher D. Zunder, Eli R. |
description | Precisely controlled development of the somatosensory system is essential for detecting pain, itch, temperature, mechanical touch and body position. To investigate the protein-level changes that occur during somatosensory development, we performed single-cell mass cytometry on dorsal root ganglia from C57/BL6 mice of both sexes, with litter replicates collected daily from embryonic day 11.5 to postnatal day 4. Measuring nearly 3 million cells, we quantified 30 molecularly distinct somatosensory glial and 41 distinct neuronal states across all timepoints. Analysis of differentiation trajectories revealed rare cells that co-express two or more Trk receptors and over-express stem cell markers, suggesting that these neurotrophic factor receptors play a role in cell fate specification. Comparison to previous RNA-based studies identified substantial differences between many protein–mRNA pairs, demonstrating the importance of protein-level measurements to identify functional cell states. Overall, this study demonstrates that mass cytometry is a high-throughput, scalable platform to rapidly phenotype somatosensory tissues.
Somatosensory neurons detect pain, temperature and touch. Keeler et al. constructed a single-cell, protein-level atlas of nearly 3 million cells from the mouse dorsal root ganglia, covering 13 days of embryonic and postnatal development. |
doi_str_mv | 10.1038/s41593-022-01181-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2730314592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2730314592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-247cb53c8c2fc3106ac7975c8510ac365690ac5ba91083e200332817a0b99b8d3</originalsourceid><addsrcrecordid>eNp9kUuLFTEQhRtRnIf-ARcScOMmmkfntRyG0REG3Og6pNPpa4bu5JpKD_TG326uPSq4cFUV6junipyue0XJO0q4fg89FYZjwhgmlGqK9ZPunIpeYqqYfNp6YhSWTMiz7gLgnhCihDbPuzMuOeFE6vPuxxUaw0OY83EJqboZuTo7QHlCkBdXM4QEuWxojA-hQJyidzXmhFwaUZuvZX_GhOq3gMZcoHmUnCs6uHSYo0PDhiC2NmAf5rmJAJDfal5CLduL7tnkZggvH-tl9_XDzZfrW3z3-eOn66s77HtqKma98oPgXns2eU6JdF4ZJbwWlDjPpZCmVTE4Q4nmgRHCOdNUOTIYM-iRX3Zvd99jyd_XANUuEU73uBTyCpap9iG0F4Y19M0_6H1eS2rXnSjKm7nqG8V2ypcMUMJkjyUurmyWEntKx-7p2JaO_ZWO1U30-tF6HZYw_pH8jqMBfAegjdIhlL-7_2P7EyN0m4c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731320074</pqid></control><display><type>article</type><title>A developmental atlas of somatosensory diversification and maturation in the dorsal root ganglia by single-cell mass cytometry</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Keeler, Austin B. ; Van Deusen, Amy L. ; Gadani, Irene C. ; Williams, Corey M. ; Goggin, Sarah M. ; Hirt, Ashley K. ; Vradenburgh, Shayla A. ; Fread, Kristen I. ; Puleo, Emily A. ; Jin, Lucy ; Calhan, O. Yipkin ; Deppmann, Christopher D. ; Zunder, Eli R.</creator><creatorcontrib>Keeler, Austin B. ; Van Deusen, Amy L. ; Gadani, Irene C. ; Williams, Corey M. ; Goggin, Sarah M. ; Hirt, Ashley K. ; Vradenburgh, Shayla A. ; Fread, Kristen I. ; Puleo, Emily A. ; Jin, Lucy ; Calhan, O. Yipkin ; Deppmann, Christopher D. ; Zunder, Eli R.</creatorcontrib><description>Precisely controlled development of the somatosensory system is essential for detecting pain, itch, temperature, mechanical touch and body position. To investigate the protein-level changes that occur during somatosensory development, we performed single-cell mass cytometry on dorsal root ganglia from C57/BL6 mice of both sexes, with litter replicates collected daily from embryonic day 11.5 to postnatal day 4. Measuring nearly 3 million cells, we quantified 30 molecularly distinct somatosensory glial and 41 distinct neuronal states across all timepoints. Analysis of differentiation trajectories revealed rare cells that co-express two or more Trk receptors and over-express stem cell markers, suggesting that these neurotrophic factor receptors play a role in cell fate specification. Comparison to previous RNA-based studies identified substantial differences between many protein–mRNA pairs, demonstrating the importance of protein-level measurements to identify functional cell states. Overall, this study demonstrates that mass cytometry is a high-throughput, scalable platform to rapidly phenotype somatosensory tissues.
Somatosensory neurons detect pain, temperature and touch. Keeler et al. constructed a single-cell, protein-level atlas of nearly 3 million cells from the mouse dorsal root ganglia, covering 13 days of embryonic and postnatal development.</description><identifier>ISSN: 1097-6256</identifier><identifier>ISSN: 1546-1726</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-022-01181-8</identifier><identifier>PMID: 36303068</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13/1 ; 13/31 ; 13/51 ; 14/63 ; 631/378/2571/1696 ; 631/378/2571/219 ; 631/378/2571/2573 ; 631/378/2620 ; 64/60 ; 82/58 ; 82/80 ; Animal Genetics and Genomics ; Animals ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Body temperature ; Cell Differentiation ; Cell fate ; Cytometry ; Dorsal root ganglia ; Embryogenesis ; Female ; Ganglia ; Ganglia, Spinal - physiology ; Male ; Maturation ; Mice ; mRNA ; Neurobiology ; Neuroglia ; Neuronal-glial interactions ; Neurons - physiology ; Neurosciences ; Neurotrophic factors ; Neurotrophin receptors ; Pain ; Phenotypes ; Proteins ; Receptors ; Resource ; RNA, Messenger - genetics ; Somatosensory system ; Stem cells ; Trajectory analysis ; Trk receptors</subject><ispartof>Nature neuroscience, 2022-11, Vol.25 (11), p.1543-1558</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-247cb53c8c2fc3106ac7975c8510ac365690ac5ba91083e200332817a0b99b8d3</citedby><cites>FETCH-LOGICAL-c419t-247cb53c8c2fc3106ac7975c8510ac365690ac5ba91083e200332817a0b99b8d3</cites><orcidid>0000-0001-5630-6533 ; 0000-0002-6591-1767 ; 0000-0002-0356-1685 ; 0000-0002-6427-0283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-022-01181-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-022-01181-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36303068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keeler, Austin B.</creatorcontrib><creatorcontrib>Van Deusen, Amy L.</creatorcontrib><creatorcontrib>Gadani, Irene C.</creatorcontrib><creatorcontrib>Williams, Corey M.</creatorcontrib><creatorcontrib>Goggin, Sarah M.</creatorcontrib><creatorcontrib>Hirt, Ashley K.</creatorcontrib><creatorcontrib>Vradenburgh, Shayla A.</creatorcontrib><creatorcontrib>Fread, Kristen I.</creatorcontrib><creatorcontrib>Puleo, Emily A.</creatorcontrib><creatorcontrib>Jin, Lucy</creatorcontrib><creatorcontrib>Calhan, O. Yipkin</creatorcontrib><creatorcontrib>Deppmann, Christopher D.</creatorcontrib><creatorcontrib>Zunder, Eli R.</creatorcontrib><title>A developmental atlas of somatosensory diversification and maturation in the dorsal root ganglia by single-cell mass cytometry</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>Precisely controlled development of the somatosensory system is essential for detecting pain, itch, temperature, mechanical touch and body position. To investigate the protein-level changes that occur during somatosensory development, we performed single-cell mass cytometry on dorsal root ganglia from C57/BL6 mice of both sexes, with litter replicates collected daily from embryonic day 11.5 to postnatal day 4. Measuring nearly 3 million cells, we quantified 30 molecularly distinct somatosensory glial and 41 distinct neuronal states across all timepoints. Analysis of differentiation trajectories revealed rare cells that co-express two or more Trk receptors and over-express stem cell markers, suggesting that these neurotrophic factor receptors play a role in cell fate specification. Comparison to previous RNA-based studies identified substantial differences between many protein–mRNA pairs, demonstrating the importance of protein-level measurements to identify functional cell states. Overall, this study demonstrates that mass cytometry is a high-throughput, scalable platform to rapidly phenotype somatosensory tissues.
Somatosensory neurons detect pain, temperature and touch. Keeler et al. constructed a single-cell, protein-level atlas of nearly 3 million cells from the mouse dorsal root ganglia, covering 13 days of embryonic and postnatal development.</description><subject>13/1</subject><subject>13/31</subject><subject>13/51</subject><subject>14/63</subject><subject>631/378/2571/1696</subject><subject>631/378/2571/219</subject><subject>631/378/2571/2573</subject><subject>631/378/2620</subject><subject>64/60</subject><subject>82/58</subject><subject>82/80</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Body temperature</subject><subject>Cell Differentiation</subject><subject>Cell fate</subject><subject>Cytometry</subject><subject>Dorsal root ganglia</subject><subject>Embryogenesis</subject><subject>Female</subject><subject>Ganglia</subject><subject>Ganglia, Spinal - physiology</subject><subject>Male</subject><subject>Maturation</subject><subject>Mice</subject><subject>mRNA</subject><subject>Neurobiology</subject><subject>Neuroglia</subject><subject>Neuronal-glial interactions</subject><subject>Neurons - physiology</subject><subject>Neurosciences</subject><subject>Neurotrophic factors</subject><subject>Neurotrophin receptors</subject><subject>Pain</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Resource</subject><subject>RNA, Messenger - genetics</subject><subject>Somatosensory system</subject><subject>Stem cells</subject><subject>Trajectory analysis</subject><subject>Trk receptors</subject><issn>1097-6256</issn><issn>1546-1726</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUuLFTEQhRtRnIf-ARcScOMmmkfntRyG0REG3Og6pNPpa4bu5JpKD_TG326uPSq4cFUV6junipyue0XJO0q4fg89FYZjwhgmlGqK9ZPunIpeYqqYfNp6YhSWTMiz7gLgnhCihDbPuzMuOeFE6vPuxxUaw0OY83EJqboZuTo7QHlCkBdXM4QEuWxojA-hQJyidzXmhFwaUZuvZX_GhOq3gMZcoHmUnCs6uHSYo0PDhiC2NmAf5rmJAJDfal5CLduL7tnkZggvH-tl9_XDzZfrW3z3-eOn66s77HtqKma98oPgXns2eU6JdF4ZJbwWlDjPpZCmVTE4Q4nmgRHCOdNUOTIYM-iRX3Zvd99jyd_XANUuEU73uBTyCpap9iG0F4Y19M0_6H1eS2rXnSjKm7nqG8V2ypcMUMJkjyUurmyWEntKx-7p2JaO_ZWO1U30-tF6HZYw_pH8jqMBfAegjdIhlL-7_2P7EyN0m4c</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Keeler, Austin B.</creator><creator>Van Deusen, Amy L.</creator><creator>Gadani, Irene C.</creator><creator>Williams, Corey M.</creator><creator>Goggin, Sarah M.</creator><creator>Hirt, Ashley K.</creator><creator>Vradenburgh, Shayla A.</creator><creator>Fread, Kristen I.</creator><creator>Puleo, Emily A.</creator><creator>Jin, Lucy</creator><creator>Calhan, O. Yipkin</creator><creator>Deppmann, Christopher D.</creator><creator>Zunder, Eli R.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5630-6533</orcidid><orcidid>https://orcid.org/0000-0002-6591-1767</orcidid><orcidid>https://orcid.org/0000-0002-0356-1685</orcidid><orcidid>https://orcid.org/0000-0002-6427-0283</orcidid></search><sort><creationdate>20221101</creationdate><title>A developmental atlas of somatosensory diversification and maturation in the dorsal root ganglia by single-cell mass cytometry</title><author>Keeler, Austin B. ; Van Deusen, Amy L. ; Gadani, Irene C. ; Williams, Corey M. ; Goggin, Sarah M. ; Hirt, Ashley K. ; Vradenburgh, Shayla A. ; Fread, Kristen I. ; Puleo, Emily A. ; Jin, Lucy ; Calhan, O. Yipkin ; Deppmann, Christopher D. ; Zunder, Eli R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-247cb53c8c2fc3106ac7975c8510ac365690ac5ba91083e200332817a0b99b8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/1</topic><topic>13/31</topic><topic>13/51</topic><topic>14/63</topic><topic>631/378/2571/1696</topic><topic>631/378/2571/219</topic><topic>631/378/2571/2573</topic><topic>631/378/2620</topic><topic>64/60</topic><topic>82/58</topic><topic>82/80</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Body temperature</topic><topic>Cell Differentiation</topic><topic>Cell fate</topic><topic>Cytometry</topic><topic>Dorsal root ganglia</topic><topic>Embryogenesis</topic><topic>Female</topic><topic>Ganglia</topic><topic>Ganglia, Spinal - physiology</topic><topic>Male</topic><topic>Maturation</topic><topic>Mice</topic><topic>mRNA</topic><topic>Neurobiology</topic><topic>Neuroglia</topic><topic>Neuronal-glial interactions</topic><topic>Neurons - physiology</topic><topic>Neurosciences</topic><topic>Neurotrophic factors</topic><topic>Neurotrophin receptors</topic><topic>Pain</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Resource</topic><topic>RNA, Messenger - genetics</topic><topic>Somatosensory system</topic><topic>Stem cells</topic><topic>Trajectory analysis</topic><topic>Trk receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keeler, Austin B.</creatorcontrib><creatorcontrib>Van Deusen, Amy L.</creatorcontrib><creatorcontrib>Gadani, Irene C.</creatorcontrib><creatorcontrib>Williams, Corey M.</creatorcontrib><creatorcontrib>Goggin, Sarah M.</creatorcontrib><creatorcontrib>Hirt, Ashley K.</creatorcontrib><creatorcontrib>Vradenburgh, Shayla A.</creatorcontrib><creatorcontrib>Fread, Kristen I.</creatorcontrib><creatorcontrib>Puleo, Emily A.</creatorcontrib><creatorcontrib>Jin, Lucy</creatorcontrib><creatorcontrib>Calhan, O. Yipkin</creatorcontrib><creatorcontrib>Deppmann, Christopher D.</creatorcontrib><creatorcontrib>Zunder, Eli R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keeler, Austin B.</au><au>Van Deusen, Amy L.</au><au>Gadani, Irene C.</au><au>Williams, Corey M.</au><au>Goggin, Sarah M.</au><au>Hirt, Ashley K.</au><au>Vradenburgh, Shayla A.</au><au>Fread, Kristen I.</au><au>Puleo, Emily A.</au><au>Jin, Lucy</au><au>Calhan, O. Yipkin</au><au>Deppmann, Christopher D.</au><au>Zunder, Eli R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A developmental atlas of somatosensory diversification and maturation in the dorsal root ganglia by single-cell mass cytometry</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>25</volume><issue>11</issue><spage>1543</spage><epage>1558</epage><pages>1543-1558</pages><issn>1097-6256</issn><issn>1546-1726</issn><eissn>1546-1726</eissn><abstract>Precisely controlled development of the somatosensory system is essential for detecting pain, itch, temperature, mechanical touch and body position. To investigate the protein-level changes that occur during somatosensory development, we performed single-cell mass cytometry on dorsal root ganglia from C57/BL6 mice of both sexes, with litter replicates collected daily from embryonic day 11.5 to postnatal day 4. Measuring nearly 3 million cells, we quantified 30 molecularly distinct somatosensory glial and 41 distinct neuronal states across all timepoints. Analysis of differentiation trajectories revealed rare cells that co-express two or more Trk receptors and over-express stem cell markers, suggesting that these neurotrophic factor receptors play a role in cell fate specification. Comparison to previous RNA-based studies identified substantial differences between many protein–mRNA pairs, demonstrating the importance of protein-level measurements to identify functional cell states. Overall, this study demonstrates that mass cytometry is a high-throughput, scalable platform to rapidly phenotype somatosensory tissues.
Somatosensory neurons detect pain, temperature and touch. Keeler et al. constructed a single-cell, protein-level atlas of nearly 3 million cells from the mouse dorsal root ganglia, covering 13 days of embryonic and postnatal development.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>36303068</pmid><doi>10.1038/s41593-022-01181-8</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5630-6533</orcidid><orcidid>https://orcid.org/0000-0002-6591-1767</orcidid><orcidid>https://orcid.org/0000-0002-0356-1685</orcidid><orcidid>https://orcid.org/0000-0002-6427-0283</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2022-11, Vol.25 (11), p.1543-1558 |
issn | 1097-6256 1546-1726 1546-1726 |
language | eng |
recordid | cdi_proquest_miscellaneous_2730314592 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 13/1 13/31 13/51 14/63 631/378/2571/1696 631/378/2571/219 631/378/2571/2573 631/378/2620 64/60 82/58 82/80 Animal Genetics and Genomics Animals Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Body temperature Cell Differentiation Cell fate Cytometry Dorsal root ganglia Embryogenesis Female Ganglia Ganglia, Spinal - physiology Male Maturation Mice mRNA Neurobiology Neuroglia Neuronal-glial interactions Neurons - physiology Neurosciences Neurotrophic factors Neurotrophin receptors Pain Phenotypes Proteins Receptors Resource RNA, Messenger - genetics Somatosensory system Stem cells Trajectory analysis Trk receptors |
title | A developmental atlas of somatosensory diversification and maturation in the dorsal root ganglia by single-cell mass cytometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A06%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20developmental%20atlas%20of%20somatosensory%20diversification%20and%20maturation%20in%20the%20dorsal%20root%20ganglia%20by%20single-cell%20mass%20cytometry&rft.jtitle=Nature%20neuroscience&rft.au=Keeler,%20Austin%20B.&rft.date=2022-11-01&rft.volume=25&rft.issue=11&rft.spage=1543&rft.epage=1558&rft.pages=1543-1558&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-022-01181-8&rft_dat=%3Cproquest_cross%3E2730314592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2731320074&rft_id=info:pmid/36303068&rfr_iscdi=true |