Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images

Objective: With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of translational engineering in health and medicine 2022-01, Vol.10, p.1-12
Hauptverfasser: Niu, Sheng-Yong, Guo, Lun-Zhang, Li, Yue, Zhang, Zhiming, Wang, Tzung-Dau, Liu, Kai-Chun, Li, You-Jin, Tsao, Yu, Liu, Tzu-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE journal of translational engineering in health and medicine
container_volume 10
creator Niu, Sheng-Yong
Guo, Lun-Zhang
Li, Yue
Zhang, Zhiming
Wang, Tzung-Dau
Liu, Kai-Chun
Li, You-Jin
Tsao, Yu
Liu, Tzu-Ming
description Objective: With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily suppress the perturbative noise in high-contrast images; however, for low photon budget multiphoton images, a high detector gain will not only boost the signals but also bring significant background noise. In such a stochastic resonance imaging regime, subthreshold signals may be detectable with the help of noise, meaning that a denoising filter capable of removing noise without sacrificing important cellular features, such as cell boundaries, is desirable. Method: We propose a convolutional neural network-based denoising autoencoder method - a fully convolutional deep denoising autoencoder (DDAE) - to improve the quality of three-photon fluorescence (3PF) and third-harmonic generation (THG) microscopy images. Results: The average of 200 acquired images of a given location served as the low-noise answer for the DDAE training. Compared with other conventional denoising methods, our DDAE model shows a better signal-to-noise ratio (28.86 and 21.66 for 3PF and THG, respectively), structural similarity (0.89 and 0.70 for 3PF and THG, respectively), and preservation of the nuclear or cellular boundaries (F1-score of 0.662 and 0.736 for 3PF and THG, respectively). It shows that DDAE is a better trade-off approach between structural similarity and preserving signal regions. Conclusions: The results of this study validate the effectiveness of the DDAE system in boundary-preserved image denoising. Clinical Impact: The proposed deep denoising system can enhance the quality of microscopic images and effectively support clinical evaluation and assessment.
doi_str_mv 10.1109/JTEHM.2022.3206488
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2730311729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9889701</ieee_id><doaj_id>oai_doaj_org_article_d7a0b3934bfb49e1bf0445a9f7cc33cd</doaj_id><sourcerecordid>2722549962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-cf090d7b6d2bc864561abf32942da36d3c3ea45f3d95aa1b3f8c31fd6f92a4723</originalsourceid><addsrcrecordid>eNpdUU1vEzEQXSGQqEL_AFxW4sJlU3vs_fAFCUpog1qBoD1b_hgnjjZ2sHcr8e_ZbaKK4sOMZb_3NG9eUbylZEkpERff7lbXt0sgAEsGpOFd96I4A9p0FbAWXv5zf12c57wj0-loI0CcFfef4xisSn-qHwkzpge05RfEw1RC9NmHTRld-WuIZqvy4E35E3MMKhgsV2E7d1vejv3gD9s4xFCu92qD-U3xyqk-4_mpL4r7r6u7y-vq5vvV-vLTTWW4YENlHBHEtrqxoE3X8LqhSjsGgoNVrLHMMFS8dsyKWimqmesMo842ToDiLbBFsT7q2qh28pD8fnIio_Ly8SGmjVRpmrpHaVtFNBOMa6e5QKod4bxWwrXGMGbspPXxqHUY9R6twTAk1T8Tff4T_FZu4oMUtQAy-VkUH04CKf4eMQ9y77PBvlcB45gltIwwSluYoe__g-7imMK0qgkFUHMhmtkdHFEmxZwTuqdhKJFz8vIxeTknL0_JT6R3R5JHxCeC6DrREsr-ApvNq4o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722549962</pqid></control><display><type>article</type><title>Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Niu, Sheng-Yong ; Guo, Lun-Zhang ; Li, Yue ; Zhang, Zhiming ; Wang, Tzung-Dau ; Liu, Kai-Chun ; Li, You-Jin ; Tsao, Yu ; Liu, Tzu-Ming</creator><creatorcontrib>Niu, Sheng-Yong ; Guo, Lun-Zhang ; Li, Yue ; Zhang, Zhiming ; Wang, Tzung-Dau ; Liu, Kai-Chun ; Li, You-Jin ; Tsao, Yu ; Liu, Tzu-Ming</creatorcontrib><description>Objective: With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily suppress the perturbative noise in high-contrast images; however, for low photon budget multiphoton images, a high detector gain will not only boost the signals but also bring significant background noise. In such a stochastic resonance imaging regime, subthreshold signals may be detectable with the help of noise, meaning that a denoising filter capable of removing noise without sacrificing important cellular features, such as cell boundaries, is desirable. Method: We propose a convolutional neural network-based denoising autoencoder method - a fully convolutional deep denoising autoencoder (DDAE) - to improve the quality of three-photon fluorescence (3PF) and third-harmonic generation (THG) microscopy images. Results: The average of 200 acquired images of a given location served as the low-noise answer for the DDAE training. Compared with other conventional denoising methods, our DDAE model shows a better signal-to-noise ratio (28.86 and 21.66 for 3PF and THG, respectively), structural similarity (0.89 and 0.70 for 3PF and THG, respectively), and preservation of the nuclear or cellular boundaries (F1-score of 0.662 and 0.736 for 3PF and THG, respectively). It shows that DDAE is a better trade-off approach between structural similarity and preserving signal regions. Conclusions: The results of this study validate the effectiveness of the DDAE system in boundary-preserved image denoising. Clinical Impact: The proposed deep denoising system can enhance the quality of microscopic images and effectively support clinical evaluation and assessment.</description><identifier>ISSN: 2168-2372</identifier><identifier>EISSN: 2168-2372</identifier><identifier>DOI: 10.1109/JTEHM.2022.3206488</identifier><identifier>CODEN: IJTEBN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Background noise ; Boundaries ; deep denoising autoencoder ; Fluorescence ; Harmonic generations ; Image acquisition ; Image contrast ; Image enhancement ; Image quality ; Image segmentation ; Imaging ; Microprocessors ; Microscopy ; Noise reduction ; Optical filters ; Photonics ; Photons ; Signal to noise ratio ; Similarity ; Stochastic resonance ; Third harmonic generation ; three-photon fluorescence</subject><ispartof>IEEE journal of translational engineering in health and medicine, 2022-01, Vol.10, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>2022 Author</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-cf090d7b6d2bc864561abf32942da36d3c3ea45f3d95aa1b3f8c31fd6f92a4723</citedby><cites>FETCH-LOGICAL-c493t-cf090d7b6d2bc864561abf32942da36d3c3ea45f3d95aa1b3f8c31fd6f92a4723</cites><orcidid>0000-0002-7180-3607 ; 0000-0001-6956-0418 ; 0000-0001-7867-4716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592049/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9889701$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27633,27924,27925,53791,53793,54933</link.rule.ids></links><search><creatorcontrib>Niu, Sheng-Yong</creatorcontrib><creatorcontrib>Guo, Lun-Zhang</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Zhang, Zhiming</creatorcontrib><creatorcontrib>Wang, Tzung-Dau</creatorcontrib><creatorcontrib>Liu, Kai-Chun</creatorcontrib><creatorcontrib>Li, You-Jin</creatorcontrib><creatorcontrib>Tsao, Yu</creatorcontrib><creatorcontrib>Liu, Tzu-Ming</creatorcontrib><title>Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images</title><title>IEEE journal of translational engineering in health and medicine</title><addtitle>JTEHM</addtitle><description>Objective: With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily suppress the perturbative noise in high-contrast images; however, for low photon budget multiphoton images, a high detector gain will not only boost the signals but also bring significant background noise. In such a stochastic resonance imaging regime, subthreshold signals may be detectable with the help of noise, meaning that a denoising filter capable of removing noise without sacrificing important cellular features, such as cell boundaries, is desirable. Method: We propose a convolutional neural network-based denoising autoencoder method - a fully convolutional deep denoising autoencoder (DDAE) - to improve the quality of three-photon fluorescence (3PF) and third-harmonic generation (THG) microscopy images. Results: The average of 200 acquired images of a given location served as the low-noise answer for the DDAE training. Compared with other conventional denoising methods, our DDAE model shows a better signal-to-noise ratio (28.86 and 21.66 for 3PF and THG, respectively), structural similarity (0.89 and 0.70 for 3PF and THG, respectively), and preservation of the nuclear or cellular boundaries (F1-score of 0.662 and 0.736 for 3PF and THG, respectively). It shows that DDAE is a better trade-off approach between structural similarity and preserving signal regions. Conclusions: The results of this study validate the effectiveness of the DDAE system in boundary-preserved image denoising. Clinical Impact: The proposed deep denoising system can enhance the quality of microscopic images and effectively support clinical evaluation and assessment.</description><subject>Artificial neural networks</subject><subject>Background noise</subject><subject>Boundaries</subject><subject>deep denoising autoencoder</subject><subject>Fluorescence</subject><subject>Harmonic generations</subject><subject>Image acquisition</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Microprocessors</subject><subject>Microscopy</subject><subject>Noise reduction</subject><subject>Optical filters</subject><subject>Photonics</subject><subject>Photons</subject><subject>Signal to noise ratio</subject><subject>Similarity</subject><subject>Stochastic resonance</subject><subject>Third harmonic generation</subject><subject>three-photon fluorescence</subject><issn>2168-2372</issn><issn>2168-2372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdUU1vEzEQXSGQqEL_AFxW4sJlU3vs_fAFCUpog1qBoD1b_hgnjjZ2sHcr8e_ZbaKK4sOMZb_3NG9eUbylZEkpERff7lbXt0sgAEsGpOFd96I4A9p0FbAWXv5zf12c57wj0-loI0CcFfef4xisSn-qHwkzpge05RfEw1RC9NmHTRld-WuIZqvy4E35E3MMKhgsV2E7d1vejv3gD9s4xFCu92qD-U3xyqk-4_mpL4r7r6u7y-vq5vvV-vLTTWW4YENlHBHEtrqxoE3X8LqhSjsGgoNVrLHMMFS8dsyKWimqmesMo842ToDiLbBFsT7q2qh28pD8fnIio_Ly8SGmjVRpmrpHaVtFNBOMa6e5QKod4bxWwrXGMGbspPXxqHUY9R6twTAk1T8Tff4T_FZu4oMUtQAy-VkUH04CKf4eMQ9y77PBvlcB45gltIwwSluYoe__g-7imMK0qgkFUHMhmtkdHFEmxZwTuqdhKJFz8vIxeTknL0_JT6R3R5JHxCeC6DrREsr-ApvNq4o</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Niu, Sheng-Yong</creator><creator>Guo, Lun-Zhang</creator><creator>Li, Yue</creator><creator>Zhang, Zhiming</creator><creator>Wang, Tzung-Dau</creator><creator>Liu, Kai-Chun</creator><creator>Li, You-Jin</creator><creator>Tsao, Yu</creator><creator>Liu, Tzu-Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7180-3607</orcidid><orcidid>https://orcid.org/0000-0001-6956-0418</orcidid><orcidid>https://orcid.org/0000-0001-7867-4716</orcidid></search><sort><creationdate>20220101</creationdate><title>Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images</title><author>Niu, Sheng-Yong ; Guo, Lun-Zhang ; Li, Yue ; Zhang, Zhiming ; Wang, Tzung-Dau ; Liu, Kai-Chun ; Li, You-Jin ; Tsao, Yu ; Liu, Tzu-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-cf090d7b6d2bc864561abf32942da36d3c3ea45f3d95aa1b3f8c31fd6f92a4723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Background noise</topic><topic>Boundaries</topic><topic>deep denoising autoencoder</topic><topic>Fluorescence</topic><topic>Harmonic generations</topic><topic>Image acquisition</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Microprocessors</topic><topic>Microscopy</topic><topic>Noise reduction</topic><topic>Optical filters</topic><topic>Photonics</topic><topic>Photons</topic><topic>Signal to noise ratio</topic><topic>Similarity</topic><topic>Stochastic resonance</topic><topic>Third harmonic generation</topic><topic>three-photon fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Sheng-Yong</creatorcontrib><creatorcontrib>Guo, Lun-Zhang</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Zhang, Zhiming</creatorcontrib><creatorcontrib>Wang, Tzung-Dau</creatorcontrib><creatorcontrib>Liu, Kai-Chun</creatorcontrib><creatorcontrib>Li, You-Jin</creatorcontrib><creatorcontrib>Tsao, Yu</creatorcontrib><creatorcontrib>Liu, Tzu-Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of translational engineering in health and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Sheng-Yong</au><au>Guo, Lun-Zhang</au><au>Li, Yue</au><au>Zhang, Zhiming</au><au>Wang, Tzung-Dau</au><au>Liu, Kai-Chun</au><au>Li, You-Jin</au><au>Tsao, Yu</au><au>Liu, Tzu-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images</atitle><jtitle>IEEE journal of translational engineering in health and medicine</jtitle><stitle>JTEHM</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2168-2372</issn><eissn>2168-2372</eissn><coden>IJTEBN</coden><abstract>Objective: With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily suppress the perturbative noise in high-contrast images; however, for low photon budget multiphoton images, a high detector gain will not only boost the signals but also bring significant background noise. In such a stochastic resonance imaging regime, subthreshold signals may be detectable with the help of noise, meaning that a denoising filter capable of removing noise without sacrificing important cellular features, such as cell boundaries, is desirable. Method: We propose a convolutional neural network-based denoising autoencoder method - a fully convolutional deep denoising autoencoder (DDAE) - to improve the quality of three-photon fluorescence (3PF) and third-harmonic generation (THG) microscopy images. Results: The average of 200 acquired images of a given location served as the low-noise answer for the DDAE training. Compared with other conventional denoising methods, our DDAE model shows a better signal-to-noise ratio (28.86 and 21.66 for 3PF and THG, respectively), structural similarity (0.89 and 0.70 for 3PF and THG, respectively), and preservation of the nuclear or cellular boundaries (F1-score of 0.662 and 0.736 for 3PF and THG, respectively). It shows that DDAE is a better trade-off approach between structural similarity and preserving signal regions. Conclusions: The results of this study validate the effectiveness of the DDAE system in boundary-preserved image denoising. Clinical Impact: The proposed deep denoising system can enhance the quality of microscopic images and effectively support clinical evaluation and assessment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JTEHM.2022.3206488</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7180-3607</orcidid><orcidid>https://orcid.org/0000-0001-6956-0418</orcidid><orcidid>https://orcid.org/0000-0001-7867-4716</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-2372
ispartof IEEE journal of translational engineering in health and medicine, 2022-01, Vol.10, p.1-12
issn 2168-2372
2168-2372
language eng
recordid cdi_proquest_miscellaneous_2730311729
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Artificial neural networks
Background noise
Boundaries
deep denoising autoencoder
Fluorescence
Harmonic generations
Image acquisition
Image contrast
Image enhancement
Image quality
Image segmentation
Imaging
Microprocessors
Microscopy
Noise reduction
Optical filters
Photonics
Photons
Signal to noise ratio
Similarity
Stochastic resonance
Third harmonic generation
three-photon fluorescence
title Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary-Preserved%20Deep%20Denoising%20of%20Stochastic%20Resonance%20Enhanced%20Multiphoton%20Images&rft.jtitle=IEEE%20journal%20of%20translational%20engineering%20in%20health%20and%20medicine&rft.au=Niu,%20Sheng-Yong&rft.date=2022-01-01&rft.volume=10&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2168-2372&rft.eissn=2168-2372&rft.coden=IJTEBN&rft_id=info:doi/10.1109/JTEHM.2022.3206488&rft_dat=%3Cproquest_cross%3E2722549962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722549962&rft_id=info:pmid/&rft_ieee_id=9889701&rft_doaj_id=oai_doaj_org_article_d7a0b3934bfb49e1bf0445a9f7cc33cd&rfr_iscdi=true