Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images
Objective: With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily s...
Gespeichert in:
Veröffentlicht in: | IEEE journal of translational engineering in health and medicine 2022-01, Vol.10, p.1-12 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE journal of translational engineering in health and medicine |
container_volume | 10 |
creator | Niu, Sheng-Yong Guo, Lun-Zhang Li, Yue Zhang, Zhiming Wang, Tzung-Dau Liu, Kai-Chun Li, You-Jin Tsao, Yu Liu, Tzu-Ming |
description | Objective: With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily suppress the perturbative noise in high-contrast images; however, for low photon budget multiphoton images, a high detector gain will not only boost the signals but also bring significant background noise. In such a stochastic resonance imaging regime, subthreshold signals may be detectable with the help of noise, meaning that a denoising filter capable of removing noise without sacrificing important cellular features, such as cell boundaries, is desirable. Method: We propose a convolutional neural network-based denoising autoencoder method - a fully convolutional deep denoising autoencoder (DDAE) - to improve the quality of three-photon fluorescence (3PF) and third-harmonic generation (THG) microscopy images. Results: The average of 200 acquired images of a given location served as the low-noise answer for the DDAE training. Compared with other conventional denoising methods, our DDAE model shows a better signal-to-noise ratio (28.86 and 21.66 for 3PF and THG, respectively), structural similarity (0.89 and 0.70 for 3PF and THG, respectively), and preservation of the nuclear or cellular boundaries (F1-score of 0.662 and 0.736 for 3PF and THG, respectively). It shows that DDAE is a better trade-off approach between structural similarity and preserving signal regions. Conclusions: The results of this study validate the effectiveness of the DDAE system in boundary-preserved image denoising. Clinical Impact: The proposed deep denoising system can enhance the quality of microscopic images and effectively support clinical evaluation and assessment. |
doi_str_mv | 10.1109/JTEHM.2022.3206488 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2730311729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9889701</ieee_id><doaj_id>oai_doaj_org_article_d7a0b3934bfb49e1bf0445a9f7cc33cd</doaj_id><sourcerecordid>2722549962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-cf090d7b6d2bc864561abf32942da36d3c3ea45f3d95aa1b3f8c31fd6f92a4723</originalsourceid><addsrcrecordid>eNpdUU1vEzEQXSGQqEL_AFxW4sJlU3vs_fAFCUpog1qBoD1b_hgnjjZ2sHcr8e_ZbaKK4sOMZb_3NG9eUbylZEkpERff7lbXt0sgAEsGpOFd96I4A9p0FbAWXv5zf12c57wj0-loI0CcFfef4xisSn-qHwkzpge05RfEw1RC9NmHTRld-WuIZqvy4E35E3MMKhgsV2E7d1vejv3gD9s4xFCu92qD-U3xyqk-4_mpL4r7r6u7y-vq5vvV-vLTTWW4YENlHBHEtrqxoE3X8LqhSjsGgoNVrLHMMFS8dsyKWimqmesMo842ToDiLbBFsT7q2qh28pD8fnIio_Ly8SGmjVRpmrpHaVtFNBOMa6e5QKod4bxWwrXGMGbspPXxqHUY9R6twTAk1T8Tff4T_FZu4oMUtQAy-VkUH04CKf4eMQ9y77PBvlcB45gltIwwSluYoe__g-7imMK0qgkFUHMhmtkdHFEmxZwTuqdhKJFz8vIxeTknL0_JT6R3R5JHxCeC6DrREsr-ApvNq4o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722549962</pqid></control><display><type>article</type><title>Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Niu, Sheng-Yong ; Guo, Lun-Zhang ; Li, Yue ; Zhang, Zhiming ; Wang, Tzung-Dau ; Liu, Kai-Chun ; Li, You-Jin ; Tsao, Yu ; Liu, Tzu-Ming</creator><creatorcontrib>Niu, Sheng-Yong ; Guo, Lun-Zhang ; Li, Yue ; Zhang, Zhiming ; Wang, Tzung-Dau ; Liu, Kai-Chun ; Li, You-Jin ; Tsao, Yu ; Liu, Tzu-Ming</creatorcontrib><description>Objective: With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily suppress the perturbative noise in high-contrast images; however, for low photon budget multiphoton images, a high detector gain will not only boost the signals but also bring significant background noise. In such a stochastic resonance imaging regime, subthreshold signals may be detectable with the help of noise, meaning that a denoising filter capable of removing noise without sacrificing important cellular features, such as cell boundaries, is desirable. Method: We propose a convolutional neural network-based denoising autoencoder method - a fully convolutional deep denoising autoencoder (DDAE) - to improve the quality of three-photon fluorescence (3PF) and third-harmonic generation (THG) microscopy images. Results: The average of 200 acquired images of a given location served as the low-noise answer for the DDAE training. Compared with other conventional denoising methods, our DDAE model shows a better signal-to-noise ratio (28.86 and 21.66 for 3PF and THG, respectively), structural similarity (0.89 and 0.70 for 3PF and THG, respectively), and preservation of the nuclear or cellular boundaries (F1-score of 0.662 and 0.736 for 3PF and THG, respectively). It shows that DDAE is a better trade-off approach between structural similarity and preserving signal regions. Conclusions: The results of this study validate the effectiveness of the DDAE system in boundary-preserved image denoising. Clinical Impact: The proposed deep denoising system can enhance the quality of microscopic images and effectively support clinical evaluation and assessment.</description><identifier>ISSN: 2168-2372</identifier><identifier>EISSN: 2168-2372</identifier><identifier>DOI: 10.1109/JTEHM.2022.3206488</identifier><identifier>CODEN: IJTEBN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Background noise ; Boundaries ; deep denoising autoencoder ; Fluorescence ; Harmonic generations ; Image acquisition ; Image contrast ; Image enhancement ; Image quality ; Image segmentation ; Imaging ; Microprocessors ; Microscopy ; Noise reduction ; Optical filters ; Photonics ; Photons ; Signal to noise ratio ; Similarity ; Stochastic resonance ; Third harmonic generation ; three-photon fluorescence</subject><ispartof>IEEE journal of translational engineering in health and medicine, 2022-01, Vol.10, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>2022 Author</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-cf090d7b6d2bc864561abf32942da36d3c3ea45f3d95aa1b3f8c31fd6f92a4723</citedby><cites>FETCH-LOGICAL-c493t-cf090d7b6d2bc864561abf32942da36d3c3ea45f3d95aa1b3f8c31fd6f92a4723</cites><orcidid>0000-0002-7180-3607 ; 0000-0001-6956-0418 ; 0000-0001-7867-4716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592049/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9889701$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27633,27924,27925,53791,53793,54933</link.rule.ids></links><search><creatorcontrib>Niu, Sheng-Yong</creatorcontrib><creatorcontrib>Guo, Lun-Zhang</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Zhang, Zhiming</creatorcontrib><creatorcontrib>Wang, Tzung-Dau</creatorcontrib><creatorcontrib>Liu, Kai-Chun</creatorcontrib><creatorcontrib>Li, You-Jin</creatorcontrib><creatorcontrib>Tsao, Yu</creatorcontrib><creatorcontrib>Liu, Tzu-Ming</creatorcontrib><title>Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images</title><title>IEEE journal of translational engineering in health and medicine</title><addtitle>JTEHM</addtitle><description>Objective: With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily suppress the perturbative noise in high-contrast images; however, for low photon budget multiphoton images, a high detector gain will not only boost the signals but also bring significant background noise. In such a stochastic resonance imaging regime, subthreshold signals may be detectable with the help of noise, meaning that a denoising filter capable of removing noise without sacrificing important cellular features, such as cell boundaries, is desirable. Method: We propose a convolutional neural network-based denoising autoencoder method - a fully convolutional deep denoising autoencoder (DDAE) - to improve the quality of three-photon fluorescence (3PF) and third-harmonic generation (THG) microscopy images. Results: The average of 200 acquired images of a given location served as the low-noise answer for the DDAE training. Compared with other conventional denoising methods, our DDAE model shows a better signal-to-noise ratio (28.86 and 21.66 for 3PF and THG, respectively), structural similarity (0.89 and 0.70 for 3PF and THG, respectively), and preservation of the nuclear or cellular boundaries (F1-score of 0.662 and 0.736 for 3PF and THG, respectively). It shows that DDAE is a better trade-off approach between structural similarity and preserving signal regions. Conclusions: The results of this study validate the effectiveness of the DDAE system in boundary-preserved image denoising. Clinical Impact: The proposed deep denoising system can enhance the quality of microscopic images and effectively support clinical evaluation and assessment.</description><subject>Artificial neural networks</subject><subject>Background noise</subject><subject>Boundaries</subject><subject>deep denoising autoencoder</subject><subject>Fluorescence</subject><subject>Harmonic generations</subject><subject>Image acquisition</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Microprocessors</subject><subject>Microscopy</subject><subject>Noise reduction</subject><subject>Optical filters</subject><subject>Photonics</subject><subject>Photons</subject><subject>Signal to noise ratio</subject><subject>Similarity</subject><subject>Stochastic resonance</subject><subject>Third harmonic generation</subject><subject>three-photon fluorescence</subject><issn>2168-2372</issn><issn>2168-2372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdUU1vEzEQXSGQqEL_AFxW4sJlU3vs_fAFCUpog1qBoD1b_hgnjjZ2sHcr8e_ZbaKK4sOMZb_3NG9eUbylZEkpERff7lbXt0sgAEsGpOFd96I4A9p0FbAWXv5zf12c57wj0-loI0CcFfef4xisSn-qHwkzpge05RfEw1RC9NmHTRld-WuIZqvy4E35E3MMKhgsV2E7d1vejv3gD9s4xFCu92qD-U3xyqk-4_mpL4r7r6u7y-vq5vvV-vLTTWW4YENlHBHEtrqxoE3X8LqhSjsGgoNVrLHMMFS8dsyKWimqmesMo842ToDiLbBFsT7q2qh28pD8fnIio_Ly8SGmjVRpmrpHaVtFNBOMa6e5QKod4bxWwrXGMGbspPXxqHUY9R6twTAk1T8Tff4T_FZu4oMUtQAy-VkUH04CKf4eMQ9y77PBvlcB45gltIwwSluYoe__g-7imMK0qgkFUHMhmtkdHFEmxZwTuqdhKJFz8vIxeTknL0_JT6R3R5JHxCeC6DrREsr-ApvNq4o</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Niu, Sheng-Yong</creator><creator>Guo, Lun-Zhang</creator><creator>Li, Yue</creator><creator>Zhang, Zhiming</creator><creator>Wang, Tzung-Dau</creator><creator>Liu, Kai-Chun</creator><creator>Li, You-Jin</creator><creator>Tsao, Yu</creator><creator>Liu, Tzu-Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7180-3607</orcidid><orcidid>https://orcid.org/0000-0001-6956-0418</orcidid><orcidid>https://orcid.org/0000-0001-7867-4716</orcidid></search><sort><creationdate>20220101</creationdate><title>Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images</title><author>Niu, Sheng-Yong ; Guo, Lun-Zhang ; Li, Yue ; Zhang, Zhiming ; Wang, Tzung-Dau ; Liu, Kai-Chun ; Li, You-Jin ; Tsao, Yu ; Liu, Tzu-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-cf090d7b6d2bc864561abf32942da36d3c3ea45f3d95aa1b3f8c31fd6f92a4723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Background noise</topic><topic>Boundaries</topic><topic>deep denoising autoencoder</topic><topic>Fluorescence</topic><topic>Harmonic generations</topic><topic>Image acquisition</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Microprocessors</topic><topic>Microscopy</topic><topic>Noise reduction</topic><topic>Optical filters</topic><topic>Photonics</topic><topic>Photons</topic><topic>Signal to noise ratio</topic><topic>Similarity</topic><topic>Stochastic resonance</topic><topic>Third harmonic generation</topic><topic>three-photon fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Sheng-Yong</creatorcontrib><creatorcontrib>Guo, Lun-Zhang</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Zhang, Zhiming</creatorcontrib><creatorcontrib>Wang, Tzung-Dau</creatorcontrib><creatorcontrib>Liu, Kai-Chun</creatorcontrib><creatorcontrib>Li, You-Jin</creatorcontrib><creatorcontrib>Tsao, Yu</creatorcontrib><creatorcontrib>Liu, Tzu-Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of translational engineering in health and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Sheng-Yong</au><au>Guo, Lun-Zhang</au><au>Li, Yue</au><au>Zhang, Zhiming</au><au>Wang, Tzung-Dau</au><au>Liu, Kai-Chun</au><au>Li, You-Jin</au><au>Tsao, Yu</au><au>Liu, Tzu-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images</atitle><jtitle>IEEE journal of translational engineering in health and medicine</jtitle><stitle>JTEHM</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2168-2372</issn><eissn>2168-2372</eissn><coden>IJTEBN</coden><abstract>Objective: With the rapid growth of high-speed deep-tissue imaging in biomedical research, there is an urgent need to develop a robust and effective denoising method to retain morphological features for further texture analysis and segmentation. Conventional denoising filters and models can easily suppress the perturbative noise in high-contrast images; however, for low photon budget multiphoton images, a high detector gain will not only boost the signals but also bring significant background noise. In such a stochastic resonance imaging regime, subthreshold signals may be detectable with the help of noise, meaning that a denoising filter capable of removing noise without sacrificing important cellular features, such as cell boundaries, is desirable. Method: We propose a convolutional neural network-based denoising autoencoder method - a fully convolutional deep denoising autoencoder (DDAE) - to improve the quality of three-photon fluorescence (3PF) and third-harmonic generation (THG) microscopy images. Results: The average of 200 acquired images of a given location served as the low-noise answer for the DDAE training. Compared with other conventional denoising methods, our DDAE model shows a better signal-to-noise ratio (28.86 and 21.66 for 3PF and THG, respectively), structural similarity (0.89 and 0.70 for 3PF and THG, respectively), and preservation of the nuclear or cellular boundaries (F1-score of 0.662 and 0.736 for 3PF and THG, respectively). It shows that DDAE is a better trade-off approach between structural similarity and preserving signal regions. Conclusions: The results of this study validate the effectiveness of the DDAE system in boundary-preserved image denoising. Clinical Impact: The proposed deep denoising system can enhance the quality of microscopic images and effectively support clinical evaluation and assessment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JTEHM.2022.3206488</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7180-3607</orcidid><orcidid>https://orcid.org/0000-0001-6956-0418</orcidid><orcidid>https://orcid.org/0000-0001-7867-4716</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2372 |
ispartof | IEEE journal of translational engineering in health and medicine, 2022-01, Vol.10, p.1-12 |
issn | 2168-2372 2168-2372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2730311729 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Artificial neural networks Background noise Boundaries deep denoising autoencoder Fluorescence Harmonic generations Image acquisition Image contrast Image enhancement Image quality Image segmentation Imaging Microprocessors Microscopy Noise reduction Optical filters Photonics Photons Signal to noise ratio Similarity Stochastic resonance Third harmonic generation three-photon fluorescence |
title | Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary-Preserved%20Deep%20Denoising%20of%20Stochastic%20Resonance%20Enhanced%20Multiphoton%20Images&rft.jtitle=IEEE%20journal%20of%20translational%20engineering%20in%20health%20and%20medicine&rft.au=Niu,%20Sheng-Yong&rft.date=2022-01-01&rft.volume=10&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2168-2372&rft.eissn=2168-2372&rft.coden=IJTEBN&rft_id=info:doi/10.1109/JTEHM.2022.3206488&rft_dat=%3Cproquest_cross%3E2722549962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722549962&rft_id=info:pmid/&rft_ieee_id=9889701&rft_doaj_id=oai_doaj_org_article_d7a0b3934bfb49e1bf0445a9f7cc33cd&rfr_iscdi=true |