Toward evaluation of multiresolution cortical thickness estimation with FreeSurfer, MaCRUISE, and BrainSuite
Abstract Advances in Magnetic Resonance Imaging hardware and methodologies allow for promoting the cortical morphometry with submillimeter spatial resolution. In this paper, we generated 3D self-enhanced high-resolution (HR) MRI imaging, by adapting 1 deep learning architecture, and 3 standard pipel...
Gespeichert in:
Veröffentlicht in: | Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2023-04, Vol.33 (9), p.5082-5096 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5096 |
---|---|
container_issue | 9 |
container_start_page | 5082 |
container_title | Cerebral cortex (New York, N.Y. 1991) |
container_volume | 33 |
creator | Nian, Rui Gao, Mingshan Zhang, Shichang Yu, Junjie Gholipour, Ali Kong, Shuang Wang, Ruirui Sui, Yao Velasco-Annis, Clemente Tomas-Fernandez, Xavier Li, Qiuying Lv, Hangyu Qian, Yuqi Warfield, Simon K |
description | Abstract
Advances in Magnetic Resonance Imaging hardware and methodologies allow for promoting the cortical morphometry with submillimeter spatial resolution. In this paper, we generated 3D self-enhanced high-resolution (HR) MRI imaging, by adapting 1 deep learning architecture, and 3 standard pipelines, FreeSurfer, MaCRUISE, and BrainSuite, have been collectively employed to evaluate the cortical thickness. We systematically investigated the differences in cortical thickness estimation for MRI sequences at multiresolution homologously originated from the native image. It has been revealed that there systematically exhibited the preferences in determining both inner and outer cortical surfaces at higher resolution, yielding most deeper cortical surface placements toward GM/WM or GM/CSF boundaries, which directs a consistent reduction tendency of mean cortical thickness estimation; on the contrary, the lower resolution data will most probably provide a more coarse and rough evaluation in cortical surface reconstruction, resulting in a relatively thicker estimation. Although the differences of cortical thickness estimation at the diverse spatial resolution varied with one another, almost all led to roughly one-sixth to one-fifth significant reduction across the entire brain at the HR, independent to the pipelines we applied, which emphasizes on generally coherent improved accuracy in a data-independent manner and endeavors to cost-efficiency with quantitative opportunities. |
doi_str_mv | 10.1093/cercor/bhac401 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2729522261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cercor/bhac401</oup_id><sourcerecordid>2729522261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-ccde33d508ea779386865b130838768fe80c8d40bcf74580ab561006de3d37063</originalsourceid><addsrcrecordid>eNqFkM1PwzAMxSMEYjC4ckQ5grRu-WjT9AjTBkggJLadqzR1tUDXjKRh4r-n0MGVky3r957th9AFJWNKMj7R4LR1k2KtdEzoATqhsSARo1l22PUkTiPOKB2gU-9fCaEpS9gxGnDBpMwoO0H10u6UKzF8qDqo1tgG2wpvQt0aB97W4WfUrWiNVjVu10a_NeA9Bt-aTS_YmXaN5w5gEVwFboSf1PRl9bCYjbBqSnzrlGkWwbRwho4qVXs439chWs1ny-l99Ph89zC9eYw0Z1kbaV0C52VCJKg0zbgUUiQF5URymQpZgSRaljEpdJXGiSSqSAQlRHSqkqdE8CG66n23zr6H7tJ8Y7yGulYN2OBzlrIsYYwJ2qHjHtXOeu-gyreu-8t95pTk3wnnfcL5PuFOcLn3DsUGyj_8N9IOuO4BG7b_mX0B48iIFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729522261</pqid></control><display><type>article</type><title>Toward evaluation of multiresolution cortical thickness estimation with FreeSurfer, MaCRUISE, and BrainSuite</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Nian, Rui ; Gao, Mingshan ; Zhang, Shichang ; Yu, Junjie ; Gholipour, Ali ; Kong, Shuang ; Wang, Ruirui ; Sui, Yao ; Velasco-Annis, Clemente ; Tomas-Fernandez, Xavier ; Li, Qiuying ; Lv, Hangyu ; Qian, Yuqi ; Warfield, Simon K</creator><creatorcontrib>Nian, Rui ; Gao, Mingshan ; Zhang, Shichang ; Yu, Junjie ; Gholipour, Ali ; Kong, Shuang ; Wang, Ruirui ; Sui, Yao ; Velasco-Annis, Clemente ; Tomas-Fernandez, Xavier ; Li, Qiuying ; Lv, Hangyu ; Qian, Yuqi ; Warfield, Simon K</creatorcontrib><description>Abstract
Advances in Magnetic Resonance Imaging hardware and methodologies allow for promoting the cortical morphometry with submillimeter spatial resolution. In this paper, we generated 3D self-enhanced high-resolution (HR) MRI imaging, by adapting 1 deep learning architecture, and 3 standard pipelines, FreeSurfer, MaCRUISE, and BrainSuite, have been collectively employed to evaluate the cortical thickness. We systematically investigated the differences in cortical thickness estimation for MRI sequences at multiresolution homologously originated from the native image. It has been revealed that there systematically exhibited the preferences in determining both inner and outer cortical surfaces at higher resolution, yielding most deeper cortical surface placements toward GM/WM or GM/CSF boundaries, which directs a consistent reduction tendency of mean cortical thickness estimation; on the contrary, the lower resolution data will most probably provide a more coarse and rough evaluation in cortical surface reconstruction, resulting in a relatively thicker estimation. Although the differences of cortical thickness estimation at the diverse spatial resolution varied with one another, almost all led to roughly one-sixth to one-fifth significant reduction across the entire brain at the HR, independent to the pipelines we applied, which emphasizes on generally coherent improved accuracy in a data-independent manner and endeavors to cost-efficiency with quantitative opportunities.</description><identifier>ISSN: 1047-3211</identifier><identifier>EISSN: 1460-2199</identifier><identifier>DOI: 10.1093/cercor/bhac401</identifier><identifier>PMID: 36288912</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Brain ; Cerebral Cortex ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods</subject><ispartof>Cerebral cortex (New York, N.Y. 1991), 2023-04, Vol.33 (9), p.5082-5096</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-ccde33d508ea779386865b130838768fe80c8d40bcf74580ab561006de3d37063</citedby><cites>FETCH-LOGICAL-c329t-ccde33d508ea779386865b130838768fe80c8d40bcf74580ab561006de3d37063</cites><orcidid>0000-0002-1235-5306 ; 0000-0001-6225-3589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36288912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nian, Rui</creatorcontrib><creatorcontrib>Gao, Mingshan</creatorcontrib><creatorcontrib>Zhang, Shichang</creatorcontrib><creatorcontrib>Yu, Junjie</creatorcontrib><creatorcontrib>Gholipour, Ali</creatorcontrib><creatorcontrib>Kong, Shuang</creatorcontrib><creatorcontrib>Wang, Ruirui</creatorcontrib><creatorcontrib>Sui, Yao</creatorcontrib><creatorcontrib>Velasco-Annis, Clemente</creatorcontrib><creatorcontrib>Tomas-Fernandez, Xavier</creatorcontrib><creatorcontrib>Li, Qiuying</creatorcontrib><creatorcontrib>Lv, Hangyu</creatorcontrib><creatorcontrib>Qian, Yuqi</creatorcontrib><creatorcontrib>Warfield, Simon K</creatorcontrib><title>Toward evaluation of multiresolution cortical thickness estimation with FreeSurfer, MaCRUISE, and BrainSuite</title><title>Cerebral cortex (New York, N.Y. 1991)</title><addtitle>Cereb Cortex</addtitle><description>Abstract
Advances in Magnetic Resonance Imaging hardware and methodologies allow for promoting the cortical morphometry with submillimeter spatial resolution. In this paper, we generated 3D self-enhanced high-resolution (HR) MRI imaging, by adapting 1 deep learning architecture, and 3 standard pipelines, FreeSurfer, MaCRUISE, and BrainSuite, have been collectively employed to evaluate the cortical thickness. We systematically investigated the differences in cortical thickness estimation for MRI sequences at multiresolution homologously originated from the native image. It has been revealed that there systematically exhibited the preferences in determining both inner and outer cortical surfaces at higher resolution, yielding most deeper cortical surface placements toward GM/WM or GM/CSF boundaries, which directs a consistent reduction tendency of mean cortical thickness estimation; on the contrary, the lower resolution data will most probably provide a more coarse and rough evaluation in cortical surface reconstruction, resulting in a relatively thicker estimation. Although the differences of cortical thickness estimation at the diverse spatial resolution varied with one another, almost all led to roughly one-sixth to one-fifth significant reduction across the entire brain at the HR, independent to the pipelines we applied, which emphasizes on generally coherent improved accuracy in a data-independent manner and endeavors to cost-efficiency with quantitative opportunities.</description><subject>Brain</subject><subject>Cerebral Cortex</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><issn>1047-3211</issn><issn>1460-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1PwzAMxSMEYjC4ckQ5grRu-WjT9AjTBkggJLadqzR1tUDXjKRh4r-n0MGVky3r957th9AFJWNKMj7R4LR1k2KtdEzoATqhsSARo1l22PUkTiPOKB2gU-9fCaEpS9gxGnDBpMwoO0H10u6UKzF8qDqo1tgG2wpvQt0aB97W4WfUrWiNVjVu10a_NeA9Bt-aTS_YmXaN5w5gEVwFboSf1PRl9bCYjbBqSnzrlGkWwbRwho4qVXs439chWs1ny-l99Ph89zC9eYw0Z1kbaV0C52VCJKg0zbgUUiQF5URymQpZgSRaljEpdJXGiSSqSAQlRHSqkqdE8CG66n23zr6H7tJ8Y7yGulYN2OBzlrIsYYwJ2qHjHtXOeu-gyreu-8t95pTk3wnnfcL5PuFOcLn3DsUGyj_8N9IOuO4BG7b_mX0B48iIFA</recordid><startdate>20230425</startdate><enddate>20230425</enddate><creator>Nian, Rui</creator><creator>Gao, Mingshan</creator><creator>Zhang, Shichang</creator><creator>Yu, Junjie</creator><creator>Gholipour, Ali</creator><creator>Kong, Shuang</creator><creator>Wang, Ruirui</creator><creator>Sui, Yao</creator><creator>Velasco-Annis, Clemente</creator><creator>Tomas-Fernandez, Xavier</creator><creator>Li, Qiuying</creator><creator>Lv, Hangyu</creator><creator>Qian, Yuqi</creator><creator>Warfield, Simon K</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1235-5306</orcidid><orcidid>https://orcid.org/0000-0001-6225-3589</orcidid></search><sort><creationdate>20230425</creationdate><title>Toward evaluation of multiresolution cortical thickness estimation with FreeSurfer, MaCRUISE, and BrainSuite</title><author>Nian, Rui ; Gao, Mingshan ; Zhang, Shichang ; Yu, Junjie ; Gholipour, Ali ; Kong, Shuang ; Wang, Ruirui ; Sui, Yao ; Velasco-Annis, Clemente ; Tomas-Fernandez, Xavier ; Li, Qiuying ; Lv, Hangyu ; Qian, Yuqi ; Warfield, Simon K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-ccde33d508ea779386865b130838768fe80c8d40bcf74580ab561006de3d37063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brain</topic><topic>Cerebral Cortex</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nian, Rui</creatorcontrib><creatorcontrib>Gao, Mingshan</creatorcontrib><creatorcontrib>Zhang, Shichang</creatorcontrib><creatorcontrib>Yu, Junjie</creatorcontrib><creatorcontrib>Gholipour, Ali</creatorcontrib><creatorcontrib>Kong, Shuang</creatorcontrib><creatorcontrib>Wang, Ruirui</creatorcontrib><creatorcontrib>Sui, Yao</creatorcontrib><creatorcontrib>Velasco-Annis, Clemente</creatorcontrib><creatorcontrib>Tomas-Fernandez, Xavier</creatorcontrib><creatorcontrib>Li, Qiuying</creatorcontrib><creatorcontrib>Lv, Hangyu</creatorcontrib><creatorcontrib>Qian, Yuqi</creatorcontrib><creatorcontrib>Warfield, Simon K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nian, Rui</au><au>Gao, Mingshan</au><au>Zhang, Shichang</au><au>Yu, Junjie</au><au>Gholipour, Ali</au><au>Kong, Shuang</au><au>Wang, Ruirui</au><au>Sui, Yao</au><au>Velasco-Annis, Clemente</au><au>Tomas-Fernandez, Xavier</au><au>Li, Qiuying</au><au>Lv, Hangyu</au><au>Qian, Yuqi</au><au>Warfield, Simon K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward evaluation of multiresolution cortical thickness estimation with FreeSurfer, MaCRUISE, and BrainSuite</atitle><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle><addtitle>Cereb Cortex</addtitle><date>2023-04-25</date><risdate>2023</risdate><volume>33</volume><issue>9</issue><spage>5082</spage><epage>5096</epage><pages>5082-5096</pages><issn>1047-3211</issn><eissn>1460-2199</eissn><abstract>Abstract
Advances in Magnetic Resonance Imaging hardware and methodologies allow for promoting the cortical morphometry with submillimeter spatial resolution. In this paper, we generated 3D self-enhanced high-resolution (HR) MRI imaging, by adapting 1 deep learning architecture, and 3 standard pipelines, FreeSurfer, MaCRUISE, and BrainSuite, have been collectively employed to evaluate the cortical thickness. We systematically investigated the differences in cortical thickness estimation for MRI sequences at multiresolution homologously originated from the native image. It has been revealed that there systematically exhibited the preferences in determining both inner and outer cortical surfaces at higher resolution, yielding most deeper cortical surface placements toward GM/WM or GM/CSF boundaries, which directs a consistent reduction tendency of mean cortical thickness estimation; on the contrary, the lower resolution data will most probably provide a more coarse and rough evaluation in cortical surface reconstruction, resulting in a relatively thicker estimation. Although the differences of cortical thickness estimation at the diverse spatial resolution varied with one another, almost all led to roughly one-sixth to one-fifth significant reduction across the entire brain at the HR, independent to the pipelines we applied, which emphasizes on generally coherent improved accuracy in a data-independent manner and endeavors to cost-efficiency with quantitative opportunities.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>36288912</pmid><doi>10.1093/cercor/bhac401</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1235-5306</orcidid><orcidid>https://orcid.org/0000-0001-6225-3589</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-3211 |
ispartof | Cerebral cortex (New York, N.Y. 1991), 2023-04, Vol.33 (9), p.5082-5096 |
issn | 1047-3211 1460-2199 |
language | eng |
recordid | cdi_proquest_miscellaneous_2729522261 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Brain Cerebral Cortex Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods |
title | Toward evaluation of multiresolution cortical thickness estimation with FreeSurfer, MaCRUISE, and BrainSuite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20evaluation%20of%20multiresolution%20cortical%20thickness%20estimation%20with%20FreeSurfer,%20MaCRUISE,%20and%20BrainSuite&rft.jtitle=Cerebral%20cortex%20(New%20York,%20N.Y.%201991)&rft.au=Nian,%20Rui&rft.date=2023-04-25&rft.volume=33&rft.issue=9&rft.spage=5082&rft.epage=5096&rft.pages=5082-5096&rft.issn=1047-3211&rft.eissn=1460-2199&rft_id=info:doi/10.1093/cercor/bhac401&rft_dat=%3Cproquest_cross%3E2729522261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729522261&rft_id=info:pmid/36288912&rft_oup_id=10.1093/cercor/bhac401&rfr_iscdi=true |