Toward evaluation of multiresolution cortical thickness estimation with FreeSurfer, MaCRUISE, and BrainSuite

Abstract Advances in Magnetic Resonance Imaging hardware and methodologies allow for promoting the cortical morphometry with submillimeter spatial resolution. In this paper, we generated 3D self-enhanced high-resolution (HR) MRI imaging, by adapting 1 deep learning architecture, and 3 standard pipel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2023-04, Vol.33 (9), p.5082-5096
Hauptverfasser: Nian, Rui, Gao, Mingshan, Zhang, Shichang, Yu, Junjie, Gholipour, Ali, Kong, Shuang, Wang, Ruirui, Sui, Yao, Velasco-Annis, Clemente, Tomas-Fernandez, Xavier, Li, Qiuying, Lv, Hangyu, Qian, Yuqi, Warfield, Simon K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5096
container_issue 9
container_start_page 5082
container_title Cerebral cortex (New York, N.Y. 1991)
container_volume 33
creator Nian, Rui
Gao, Mingshan
Zhang, Shichang
Yu, Junjie
Gholipour, Ali
Kong, Shuang
Wang, Ruirui
Sui, Yao
Velasco-Annis, Clemente
Tomas-Fernandez, Xavier
Li, Qiuying
Lv, Hangyu
Qian, Yuqi
Warfield, Simon K
description Abstract Advances in Magnetic Resonance Imaging hardware and methodologies allow for promoting the cortical morphometry with submillimeter spatial resolution. In this paper, we generated 3D self-enhanced high-resolution (HR) MRI imaging, by adapting 1 deep learning architecture, and 3 standard pipelines, FreeSurfer, MaCRUISE, and BrainSuite, have been collectively employed to evaluate the cortical thickness. We systematically investigated the differences in cortical thickness estimation for MRI sequences at multiresolution homologously originated from the native image. It has been revealed that there systematically exhibited the preferences in determining both inner and outer cortical surfaces at higher resolution, yielding most deeper cortical surface placements toward GM/WM or GM/CSF boundaries, which directs a consistent reduction tendency of mean cortical thickness estimation; on the contrary, the lower resolution data will most probably provide a more coarse and rough evaluation in cortical surface reconstruction, resulting in a relatively thicker estimation. Although the differences of cortical thickness estimation at the diverse spatial resolution varied with one another, almost all led to roughly one-sixth to one-fifth significant reduction across the entire brain at the HR, independent to the pipelines we applied, which emphasizes on generally coherent improved accuracy in a data-independent manner and endeavors to cost-efficiency with quantitative opportunities.
doi_str_mv 10.1093/cercor/bhac401
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2729522261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cercor/bhac401</oup_id><sourcerecordid>2729522261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-ccde33d508ea779386865b130838768fe80c8d40bcf74580ab561006de3d37063</originalsourceid><addsrcrecordid>eNqFkM1PwzAMxSMEYjC4ckQ5grRu-WjT9AjTBkggJLadqzR1tUDXjKRh4r-n0MGVky3r957th9AFJWNKMj7R4LR1k2KtdEzoATqhsSARo1l22PUkTiPOKB2gU-9fCaEpS9gxGnDBpMwoO0H10u6UKzF8qDqo1tgG2wpvQt0aB97W4WfUrWiNVjVu10a_NeA9Bt-aTS_YmXaN5w5gEVwFboSf1PRl9bCYjbBqSnzrlGkWwbRwho4qVXs439chWs1ny-l99Ph89zC9eYw0Z1kbaV0C52VCJKg0zbgUUiQF5URymQpZgSRaljEpdJXGiSSqSAQlRHSqkqdE8CG66n23zr6H7tJ8Y7yGulYN2OBzlrIsYYwJ2qHjHtXOeu-gyreu-8t95pTk3wnnfcL5PuFOcLn3DsUGyj_8N9IOuO4BG7b_mX0B48iIFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729522261</pqid></control><display><type>article</type><title>Toward evaluation of multiresolution cortical thickness estimation with FreeSurfer, MaCRUISE, and BrainSuite</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Nian, Rui ; Gao, Mingshan ; Zhang, Shichang ; Yu, Junjie ; Gholipour, Ali ; Kong, Shuang ; Wang, Ruirui ; Sui, Yao ; Velasco-Annis, Clemente ; Tomas-Fernandez, Xavier ; Li, Qiuying ; Lv, Hangyu ; Qian, Yuqi ; Warfield, Simon K</creator><creatorcontrib>Nian, Rui ; Gao, Mingshan ; Zhang, Shichang ; Yu, Junjie ; Gholipour, Ali ; Kong, Shuang ; Wang, Ruirui ; Sui, Yao ; Velasco-Annis, Clemente ; Tomas-Fernandez, Xavier ; Li, Qiuying ; Lv, Hangyu ; Qian, Yuqi ; Warfield, Simon K</creatorcontrib><description>Abstract Advances in Magnetic Resonance Imaging hardware and methodologies allow for promoting the cortical morphometry with submillimeter spatial resolution. In this paper, we generated 3D self-enhanced high-resolution (HR) MRI imaging, by adapting 1 deep learning architecture, and 3 standard pipelines, FreeSurfer, MaCRUISE, and BrainSuite, have been collectively employed to evaluate the cortical thickness. We systematically investigated the differences in cortical thickness estimation for MRI sequences at multiresolution homologously originated from the native image. It has been revealed that there systematically exhibited the preferences in determining both inner and outer cortical surfaces at higher resolution, yielding most deeper cortical surface placements toward GM/WM or GM/CSF boundaries, which directs a consistent reduction tendency of mean cortical thickness estimation; on the contrary, the lower resolution data will most probably provide a more coarse and rough evaluation in cortical surface reconstruction, resulting in a relatively thicker estimation. Although the differences of cortical thickness estimation at the diverse spatial resolution varied with one another, almost all led to roughly one-sixth to one-fifth significant reduction across the entire brain at the HR, independent to the pipelines we applied, which emphasizes on generally coherent improved accuracy in a data-independent manner and endeavors to cost-efficiency with quantitative opportunities.</description><identifier>ISSN: 1047-3211</identifier><identifier>EISSN: 1460-2199</identifier><identifier>DOI: 10.1093/cercor/bhac401</identifier><identifier>PMID: 36288912</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Brain ; Cerebral Cortex ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods</subject><ispartof>Cerebral cortex (New York, N.Y. 1991), 2023-04, Vol.33 (9), p.5082-5096</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-ccde33d508ea779386865b130838768fe80c8d40bcf74580ab561006de3d37063</citedby><cites>FETCH-LOGICAL-c329t-ccde33d508ea779386865b130838768fe80c8d40bcf74580ab561006de3d37063</cites><orcidid>0000-0002-1235-5306 ; 0000-0001-6225-3589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36288912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nian, Rui</creatorcontrib><creatorcontrib>Gao, Mingshan</creatorcontrib><creatorcontrib>Zhang, Shichang</creatorcontrib><creatorcontrib>Yu, Junjie</creatorcontrib><creatorcontrib>Gholipour, Ali</creatorcontrib><creatorcontrib>Kong, Shuang</creatorcontrib><creatorcontrib>Wang, Ruirui</creatorcontrib><creatorcontrib>Sui, Yao</creatorcontrib><creatorcontrib>Velasco-Annis, Clemente</creatorcontrib><creatorcontrib>Tomas-Fernandez, Xavier</creatorcontrib><creatorcontrib>Li, Qiuying</creatorcontrib><creatorcontrib>Lv, Hangyu</creatorcontrib><creatorcontrib>Qian, Yuqi</creatorcontrib><creatorcontrib>Warfield, Simon K</creatorcontrib><title>Toward evaluation of multiresolution cortical thickness estimation with FreeSurfer, MaCRUISE, and BrainSuite</title><title>Cerebral cortex (New York, N.Y. 1991)</title><addtitle>Cereb Cortex</addtitle><description>Abstract Advances in Magnetic Resonance Imaging hardware and methodologies allow for promoting the cortical morphometry with submillimeter spatial resolution. In this paper, we generated 3D self-enhanced high-resolution (HR) MRI imaging, by adapting 1 deep learning architecture, and 3 standard pipelines, FreeSurfer, MaCRUISE, and BrainSuite, have been collectively employed to evaluate the cortical thickness. We systematically investigated the differences in cortical thickness estimation for MRI sequences at multiresolution homologously originated from the native image. It has been revealed that there systematically exhibited the preferences in determining both inner and outer cortical surfaces at higher resolution, yielding most deeper cortical surface placements toward GM/WM or GM/CSF boundaries, which directs a consistent reduction tendency of mean cortical thickness estimation; on the contrary, the lower resolution data will most probably provide a more coarse and rough evaluation in cortical surface reconstruction, resulting in a relatively thicker estimation. Although the differences of cortical thickness estimation at the diverse spatial resolution varied with one another, almost all led to roughly one-sixth to one-fifth significant reduction across the entire brain at the HR, independent to the pipelines we applied, which emphasizes on generally coherent improved accuracy in a data-independent manner and endeavors to cost-efficiency with quantitative opportunities.</description><subject>Brain</subject><subject>Cerebral Cortex</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><issn>1047-3211</issn><issn>1460-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1PwzAMxSMEYjC4ckQ5grRu-WjT9AjTBkggJLadqzR1tUDXjKRh4r-n0MGVky3r957th9AFJWNKMj7R4LR1k2KtdEzoATqhsSARo1l22PUkTiPOKB2gU-9fCaEpS9gxGnDBpMwoO0H10u6UKzF8qDqo1tgG2wpvQt0aB97W4WfUrWiNVjVu10a_NeA9Bt-aTS_YmXaN5w5gEVwFboSf1PRl9bCYjbBqSnzrlGkWwbRwho4qVXs439chWs1ny-l99Ph89zC9eYw0Z1kbaV0C52VCJKg0zbgUUiQF5URymQpZgSRaljEpdJXGiSSqSAQlRHSqkqdE8CG66n23zr6H7tJ8Y7yGulYN2OBzlrIsYYwJ2qHjHtXOeu-gyreu-8t95pTk3wnnfcL5PuFOcLn3DsUGyj_8N9IOuO4BG7b_mX0B48iIFA</recordid><startdate>20230425</startdate><enddate>20230425</enddate><creator>Nian, Rui</creator><creator>Gao, Mingshan</creator><creator>Zhang, Shichang</creator><creator>Yu, Junjie</creator><creator>Gholipour, Ali</creator><creator>Kong, Shuang</creator><creator>Wang, Ruirui</creator><creator>Sui, Yao</creator><creator>Velasco-Annis, Clemente</creator><creator>Tomas-Fernandez, Xavier</creator><creator>Li, Qiuying</creator><creator>Lv, Hangyu</creator><creator>Qian, Yuqi</creator><creator>Warfield, Simon K</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1235-5306</orcidid><orcidid>https://orcid.org/0000-0001-6225-3589</orcidid></search><sort><creationdate>20230425</creationdate><title>Toward evaluation of multiresolution cortical thickness estimation with FreeSurfer, MaCRUISE, and BrainSuite</title><author>Nian, Rui ; Gao, Mingshan ; Zhang, Shichang ; Yu, Junjie ; Gholipour, Ali ; Kong, Shuang ; Wang, Ruirui ; Sui, Yao ; Velasco-Annis, Clemente ; Tomas-Fernandez, Xavier ; Li, Qiuying ; Lv, Hangyu ; Qian, Yuqi ; Warfield, Simon K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-ccde33d508ea779386865b130838768fe80c8d40bcf74580ab561006de3d37063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brain</topic><topic>Cerebral Cortex</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nian, Rui</creatorcontrib><creatorcontrib>Gao, Mingshan</creatorcontrib><creatorcontrib>Zhang, Shichang</creatorcontrib><creatorcontrib>Yu, Junjie</creatorcontrib><creatorcontrib>Gholipour, Ali</creatorcontrib><creatorcontrib>Kong, Shuang</creatorcontrib><creatorcontrib>Wang, Ruirui</creatorcontrib><creatorcontrib>Sui, Yao</creatorcontrib><creatorcontrib>Velasco-Annis, Clemente</creatorcontrib><creatorcontrib>Tomas-Fernandez, Xavier</creatorcontrib><creatorcontrib>Li, Qiuying</creatorcontrib><creatorcontrib>Lv, Hangyu</creatorcontrib><creatorcontrib>Qian, Yuqi</creatorcontrib><creatorcontrib>Warfield, Simon K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nian, Rui</au><au>Gao, Mingshan</au><au>Zhang, Shichang</au><au>Yu, Junjie</au><au>Gholipour, Ali</au><au>Kong, Shuang</au><au>Wang, Ruirui</au><au>Sui, Yao</au><au>Velasco-Annis, Clemente</au><au>Tomas-Fernandez, Xavier</au><au>Li, Qiuying</au><au>Lv, Hangyu</au><au>Qian, Yuqi</au><au>Warfield, Simon K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward evaluation of multiresolution cortical thickness estimation with FreeSurfer, MaCRUISE, and BrainSuite</atitle><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle><addtitle>Cereb Cortex</addtitle><date>2023-04-25</date><risdate>2023</risdate><volume>33</volume><issue>9</issue><spage>5082</spage><epage>5096</epage><pages>5082-5096</pages><issn>1047-3211</issn><eissn>1460-2199</eissn><abstract>Abstract Advances in Magnetic Resonance Imaging hardware and methodologies allow for promoting the cortical morphometry with submillimeter spatial resolution. In this paper, we generated 3D self-enhanced high-resolution (HR) MRI imaging, by adapting 1 deep learning architecture, and 3 standard pipelines, FreeSurfer, MaCRUISE, and BrainSuite, have been collectively employed to evaluate the cortical thickness. We systematically investigated the differences in cortical thickness estimation for MRI sequences at multiresolution homologously originated from the native image. It has been revealed that there systematically exhibited the preferences in determining both inner and outer cortical surfaces at higher resolution, yielding most deeper cortical surface placements toward GM/WM or GM/CSF boundaries, which directs a consistent reduction tendency of mean cortical thickness estimation; on the contrary, the lower resolution data will most probably provide a more coarse and rough evaluation in cortical surface reconstruction, resulting in a relatively thicker estimation. Although the differences of cortical thickness estimation at the diverse spatial resolution varied with one another, almost all led to roughly one-sixth to one-fifth significant reduction across the entire brain at the HR, independent to the pipelines we applied, which emphasizes on generally coherent improved accuracy in a data-independent manner and endeavors to cost-efficiency with quantitative opportunities.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>36288912</pmid><doi>10.1093/cercor/bhac401</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1235-5306</orcidid><orcidid>https://orcid.org/0000-0001-6225-3589</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1047-3211
ispartof Cerebral cortex (New York, N.Y. 1991), 2023-04, Vol.33 (9), p.5082-5096
issn 1047-3211
1460-2199
language eng
recordid cdi_proquest_miscellaneous_2729522261
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Brain
Cerebral Cortex
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
title Toward evaluation of multiresolution cortical thickness estimation with FreeSurfer, MaCRUISE, and BrainSuite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20evaluation%20of%20multiresolution%20cortical%20thickness%20estimation%20with%20FreeSurfer,%20MaCRUISE,%20and%20BrainSuite&rft.jtitle=Cerebral%20cortex%20(New%20York,%20N.Y.%201991)&rft.au=Nian,%20Rui&rft.date=2023-04-25&rft.volume=33&rft.issue=9&rft.spage=5082&rft.epage=5096&rft.pages=5082-5096&rft.issn=1047-3211&rft.eissn=1460-2199&rft_id=info:doi/10.1093/cercor/bhac401&rft_dat=%3Cproquest_cross%3E2729522261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729522261&rft_id=info:pmid/36288912&rft_oup_id=10.1093/cercor/bhac401&rfr_iscdi=true