High-frequency characterization of electro-optic modulation chips based on photonic down-conversion sampling and microwave fixture de-embedding

A self-reference and on-chip method for extracting the intrinsic frequency responses including modulation index and half-wave voltage of electro-optic modulator (EOM) chips is proposed based on photonic down-conversion sampling and microwave fixture de-embedding. The photonic down-conversion samplin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-10, Vol.30 (22), p.40337-40346
Hauptverfasser: He, Yutong, Xu, Ying, Zou, Xinhai, Zhang, Yali, Zhang, Zhiyao, Zhang, Shangjian, Liu, Yong, Zhu, Ninghua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A self-reference and on-chip method for extracting the intrinsic frequency responses including modulation index and half-wave voltage of electro-optic modulator (EOM) chips is proposed based on photonic down-conversion sampling and microwave fixture de-embedding. The photonic down-conversion sampling is firstly employed to extract the combined response of the source network SxN, the adapter network SAN and the EOM chip. Then the Open-Short-Load (OSL) calibration is exploited to realize the on-chip microwave de-embedding of SxN and SAN in terms of the transmission attenuation and the impedance mismatch. Finally, the power leveling technique is used to track the incident microwave power to obtain the intrinsic half-wave voltage of the EOM chip. Our method features self-reference and on-chip capability, which is applicable for the EOM chips even without a good impedance match, and is free of any extra optical/electrical (O/E) transducer standard, which will be helpful to chip evaluation and packaging optimization.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.470744