Thermal oxidation of SiC in N2O
Thermal oxidation kinetics of 3C and 6H-SiC in N2O at 1050 to 1150 C have been studied. The oxidation rate follows an unusual parabolic-linear relationship that has also been found for oxidation of silicon in N2O. The activation energy of the parabolic rate constant (B) is 3.1 +/- 0.22 eV/molecule f...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 1994-11, Vol.141 (11), p.L150-L152 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | L152 |
---|---|
container_issue | 11 |
container_start_page | L150 |
container_title | Journal of the Electrochemical Society |
container_volume | 141 |
creator | DE MEO, R. C WANG, T. K CHOW, T. P BROWN, D. M MATUS, L. G |
description | Thermal oxidation kinetics of 3C and 6H-SiC in N2O at 1050 to 1150 C have been studied. The oxidation rate follows an unusual parabolic-linear relationship that has also been found for oxidation of silicon in N2O. The activation energy of the parabolic rate constant (B) is 3.1 +/- 0.22 eV/molecule for 3C-SiC, and 4.80 -+ 1.02 eV/molecule for 6H-SiC. The limiting mechanism for oxidation is attributed to the diffusion of CO through the oxynitride layer. 3C-SiC metal oxide semiconductor capacitors fabricated in N2O exhibit fixed oxide charge densities on the order of 10 exp 12/sq cm and are slightly lower than those oxidized in steam. (Author) |
doi_str_mv | 10.1149/1.2059325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_27292508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27292508</sourcerecordid><originalsourceid>FETCH-LOGICAL-g249t-3581aab3b31cf2f3b8a07ce99ec6e84fb704bf791ce5443691b500f9dbf502ba3</originalsourceid><addsrcrecordid>eNotjE1LAzEUAIMouFYP_gL3IN62zctLNpujLFaF0h6s5-UlTTSyH3WzBf33FuxpGBiGsVvgcwBpFjAXXBkU6oxlYKQqNACcs4xzwEKWCi7ZVUpfR4VK6ozdbT_92FGbDz9xR1Mc-nwI-Vus89jna7G5ZheB2uRvTpyx9-XTtn4pVpvn1_pxVXwIaaYCVQVEFi2CCyKgrYhr543xrvSVDFZzaYM24LySEksDVnEezM4GxYUlnLGH_-9-HL4PPk1NF5PzbUu9Hw6pEVoYoXh1DO9PISVHbRipdzE1-zF2NP42iFoCKPwDgo9Kvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27292508</pqid></control><display><type>article</type><title>Thermal oxidation of SiC in N2O</title><source>Institute of Physics Journals</source><creator>DE MEO, R. C ; WANG, T. K ; CHOW, T. P ; BROWN, D. M ; MATUS, L. G</creator><creatorcontrib>DE MEO, R. C ; WANG, T. K ; CHOW, T. P ; BROWN, D. M ; MATUS, L. G</creatorcontrib><description>Thermal oxidation kinetics of 3C and 6H-SiC in N2O at 1050 to 1150 C have been studied. The oxidation rate follows an unusual parabolic-linear relationship that has also been found for oxidation of silicon in N2O. The activation energy of the parabolic rate constant (B) is 3.1 +/- 0.22 eV/molecule for 3C-SiC, and 4.80 -+ 1.02 eV/molecule for 6H-SiC. The limiting mechanism for oxidation is attributed to the diffusion of CO through the oxynitride layer. 3C-SiC metal oxide semiconductor capacitors fabricated in N2O exhibit fixed oxide charge densities on the order of 10 exp 12/sq cm and are slightly lower than those oxidized in steam. (Author)</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1.2059325</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>Pennington, NJ: Electrochemical Society</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Physics ; Surface treatments</subject><ispartof>Journal of the Electrochemical Society, 1994-11, Vol.141 (11), p.L150-L152</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3374115$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DE MEO, R. C</creatorcontrib><creatorcontrib>WANG, T. K</creatorcontrib><creatorcontrib>CHOW, T. P</creatorcontrib><creatorcontrib>BROWN, D. M</creatorcontrib><creatorcontrib>MATUS, L. G</creatorcontrib><title>Thermal oxidation of SiC in N2O</title><title>Journal of the Electrochemical Society</title><description>Thermal oxidation kinetics of 3C and 6H-SiC in N2O at 1050 to 1150 C have been studied. The oxidation rate follows an unusual parabolic-linear relationship that has also been found for oxidation of silicon in N2O. The activation energy of the parabolic rate constant (B) is 3.1 +/- 0.22 eV/molecule for 3C-SiC, and 4.80 -+ 1.02 eV/molecule for 6H-SiC. The limiting mechanism for oxidation is attributed to the diffusion of CO through the oxynitride layer. 3C-SiC metal oxide semiconductor capacitors fabricated in N2O exhibit fixed oxide charge densities on the order of 10 exp 12/sq cm and are slightly lower than those oxidized in steam. (Author)</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Physics</subject><subject>Surface treatments</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNotjE1LAzEUAIMouFYP_gL3IN62zctLNpujLFaF0h6s5-UlTTSyH3WzBf33FuxpGBiGsVvgcwBpFjAXXBkU6oxlYKQqNACcs4xzwEKWCi7ZVUpfR4VK6ozdbT_92FGbDz9xR1Mc-nwI-Vus89jna7G5ZheB2uRvTpyx9-XTtn4pVpvn1_pxVXwIaaYCVQVEFi2CCyKgrYhr543xrvSVDFZzaYM24LySEksDVnEezM4GxYUlnLGH_-9-HL4PPk1NF5PzbUu9Hw6pEVoYoXh1DO9PISVHbRipdzE1-zF2NP42iFoCKPwDgo9Kvw</recordid><startdate>19941101</startdate><enddate>19941101</enddate><creator>DE MEO, R. C</creator><creator>WANG, T. K</creator><creator>CHOW, T. P</creator><creator>BROWN, D. M</creator><creator>MATUS, L. G</creator><general>Electrochemical Society</general><scope>IQODW</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19941101</creationdate><title>Thermal oxidation of SiC in N2O</title><author>DE MEO, R. C ; WANG, T. K ; CHOW, T. P ; BROWN, D. M ; MATUS, L. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g249t-3581aab3b31cf2f3b8a07ce99ec6e84fb704bf791ce5443691b500f9dbf502ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Physics</topic><topic>Surface treatments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DE MEO, R. C</creatorcontrib><creatorcontrib>WANG, T. K</creatorcontrib><creatorcontrib>CHOW, T. P</creatorcontrib><creatorcontrib>BROWN, D. M</creatorcontrib><creatorcontrib>MATUS, L. G</creatorcontrib><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DE MEO, R. C</au><au>WANG, T. K</au><au>CHOW, T. P</au><au>BROWN, D. M</au><au>MATUS, L. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal oxidation of SiC in N2O</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>1994-11-01</date><risdate>1994</risdate><volume>141</volume><issue>11</issue><spage>L150</spage><epage>L152</epage><pages>L150-L152</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Thermal oxidation kinetics of 3C and 6H-SiC in N2O at 1050 to 1150 C have been studied. The oxidation rate follows an unusual parabolic-linear relationship that has also been found for oxidation of silicon in N2O. The activation energy of the parabolic rate constant (B) is 3.1 +/- 0.22 eV/molecule for 3C-SiC, and 4.80 -+ 1.02 eV/molecule for 6H-SiC. The limiting mechanism for oxidation is attributed to the diffusion of CO through the oxynitride layer. 3C-SiC metal oxide semiconductor capacitors fabricated in N2O exhibit fixed oxide charge densities on the order of 10 exp 12/sq cm and are slightly lower than those oxidized in steam. (Author)</abstract><cop>Pennington, NJ</cop><pub>Electrochemical Society</pub><doi>10.1149/1.2059325</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 1994-11, Vol.141 (11), p.L150-L152 |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_proquest_miscellaneous_27292508 |
source | Institute of Physics Journals |
subjects | Cross-disciplinary physics: materials science rheology Exact sciences and technology Materials science Methods of deposition of films and coatings film growth and epitaxy Physics Surface treatments |
title | Thermal oxidation of SiC in N2O |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20oxidation%20of%20SiC%20in%20N2O&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=DE%20MEO,%20R.%20C&rft.date=1994-11-01&rft.volume=141&rft.issue=11&rft.spage=L150&rft.epage=L152&rft.pages=L150-L152&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1.2059325&rft_dat=%3Cproquest_pasca%3E27292508%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27292508&rft_id=info:pmid/&rfr_iscdi=true |