Impact‐Resistant Hydrogels by Harnessing 2D Hierarchical Structures
With the strengthening capacity through harnessing multi‐length‐scale structural hierarchy, synthetic hydrogels hold tremendous promise as a low‐cost and abundant material for applications demanding unprecedented mechanical robustness. However, integrating high impact resistance and high water conte...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-01, Vol.35 (1), p.e2207587-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e2207587 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Liang, Xiangyu Chen, Guangda Lei, Iek Man Zhang, Pei Wang, Zeyu Chen, Xingmei Lu, Mengze Zhang, Jiajun Wang, Zongbao Sun, Taolin Lan, Yang Liu, Ji |
description | With the strengthening capacity through harnessing multi‐length‐scale structural hierarchy, synthetic hydrogels hold tremendous promise as a low‐cost and abundant material for applications demanding unprecedented mechanical robustness. However, integrating high impact resistance and high water content, yet superior softness, in a single hydrogel material still remains a grand challenge. Here, a simple, yet effective, strategy involving bidirectional freeze‐casting and compression‐annealing is reported, leading to a hierarchically structured hydrogel material. Rational engineering of the distinct 2D lamellar structures, well‐defined nanocrystalline domains and robust interfacial interaction among the lamellae, synergistically contributes to a record‐high ballistic energy absorption capability (i.e., 2.1 kJ m−1), without sacrificing their high water content (i.e., 85 wt%) and superior softness. Together with its low‐cost and extraordinary energy dissipation capacity, the hydrogel materials present a durable alternative to conventional hydrogel materials for armor‐like protection circumstances.
Bioinspired hydrogels with lobster‐underbelly‐like properties are reported. By engineering the hierarchical structures, synthetic hydrogel materials can be enabled with the lobster‐underbelly‐like combinational properties, including high ballistic resistance, toughness, strength, water content, and superior softness. |
doi_str_mv | 10.1002/adma.202207587 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2729028777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760751756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4137-bcadbcd485bb0ec594fc49d294bdff4ea142989a94ecf421d157971842c9857a3</originalsourceid><addsrcrecordid>eNqF0E1LwzAcx_EgipvTq0cpePHSmaRJkxzHNu1gIvhwDmmSzo4-zKRFevMl-Bp9JXZsKnjxlMsnP_58AThHcIwgxNfKlGqMIcaQUc4OwBBRjEICBT0EQygiGoqY8AE48X4NIRQxjI_BIIoxJ4TRIZgvyo3Szef7x4P1uW9U1QRJZ1y9soUP0i5IlKus93m1CvAsSHLrlNMvuVZF8Ni4Vjets_4UHGWq8PZs_47A8838aZqEy_vbxXSyDDVBEQtTrUyqDeE0TaHVVJBME2GwIKnJMmIVIlhwoQSxOiMYGUSZYIgTrAWnTEUjcLXb3bj6tbW-kWXutS0KVdm69RIzLCDmjLGeXv6h67p1VX9dr-K-FmI07tV4p7SrvXc2kxuXl8p1EkG5DSy3geVP4P7DxX62TUtrfvh30R6IHXjLC9v9Mycns7vJ7_gX1JGHrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760751756</pqid></control><display><type>article</type><title>Impact‐Resistant Hydrogels by Harnessing 2D Hierarchical Structures</title><source>Access via Wiley Online Library</source><creator>Liang, Xiangyu ; Chen, Guangda ; Lei, Iek Man ; Zhang, Pei ; Wang, Zeyu ; Chen, Xingmei ; Lu, Mengze ; Zhang, Jiajun ; Wang, Zongbao ; Sun, Taolin ; Lan, Yang ; Liu, Ji</creator><creatorcontrib>Liang, Xiangyu ; Chen, Guangda ; Lei, Iek Man ; Zhang, Pei ; Wang, Zeyu ; Chen, Xingmei ; Lu, Mengze ; Zhang, Jiajun ; Wang, Zongbao ; Sun, Taolin ; Lan, Yang ; Liu, Ji</creatorcontrib><description>With the strengthening capacity through harnessing multi‐length‐scale structural hierarchy, synthetic hydrogels hold tremendous promise as a low‐cost and abundant material for applications demanding unprecedented mechanical robustness. However, integrating high impact resistance and high water content, yet superior softness, in a single hydrogel material still remains a grand challenge. Here, a simple, yet effective, strategy involving bidirectional freeze‐casting and compression‐annealing is reported, leading to a hierarchically structured hydrogel material. Rational engineering of the distinct 2D lamellar structures, well‐defined nanocrystalline domains and robust interfacial interaction among the lamellae, synergistically contributes to a record‐high ballistic energy absorption capability (i.e., 2.1 kJ m−1), without sacrificing their high water content (i.e., 85 wt%) and superior softness. Together with its low‐cost and extraordinary energy dissipation capacity, the hydrogel materials present a durable alternative to conventional hydrogel materials for armor‐like protection circumstances.
Bioinspired hydrogels with lobster‐underbelly‐like properties are reported. By engineering the hierarchical structures, synthetic hydrogel materials can be enabled with the lobster‐underbelly‐like combinational properties, including high ballistic resistance, toughness, strength, water content, and superior softness.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202207587</identifier><identifier>PMID: 36284475</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D lamellar structures ; ballistic resistance ; crystalline materials ; Energy absorption ; Energy dissipation ; Hydrogels ; Impact resistance ; Lamellar structure ; Materials science ; Moisture content ; Softness ; Structural hierarchy</subject><ispartof>Advanced materials (Weinheim), 2023-01, Vol.35 (1), p.e2207587-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4137-bcadbcd485bb0ec594fc49d294bdff4ea142989a94ecf421d157971842c9857a3</citedby><cites>FETCH-LOGICAL-c4137-bcadbcd485bb0ec594fc49d294bdff4ea142989a94ecf421d157971842c9857a3</cites><orcidid>0000-0001-7171-405X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202207587$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202207587$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27925,27926,45575,45576</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36284475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Xiangyu</creatorcontrib><creatorcontrib>Chen, Guangda</creatorcontrib><creatorcontrib>Lei, Iek Man</creatorcontrib><creatorcontrib>Zhang, Pei</creatorcontrib><creatorcontrib>Wang, Zeyu</creatorcontrib><creatorcontrib>Chen, Xingmei</creatorcontrib><creatorcontrib>Lu, Mengze</creatorcontrib><creatorcontrib>Zhang, Jiajun</creatorcontrib><creatorcontrib>Wang, Zongbao</creatorcontrib><creatorcontrib>Sun, Taolin</creatorcontrib><creatorcontrib>Lan, Yang</creatorcontrib><creatorcontrib>Liu, Ji</creatorcontrib><title>Impact‐Resistant Hydrogels by Harnessing 2D Hierarchical Structures</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>With the strengthening capacity through harnessing multi‐length‐scale structural hierarchy, synthetic hydrogels hold tremendous promise as a low‐cost and abundant material for applications demanding unprecedented mechanical robustness. However, integrating high impact resistance and high water content, yet superior softness, in a single hydrogel material still remains a grand challenge. Here, a simple, yet effective, strategy involving bidirectional freeze‐casting and compression‐annealing is reported, leading to a hierarchically structured hydrogel material. Rational engineering of the distinct 2D lamellar structures, well‐defined nanocrystalline domains and robust interfacial interaction among the lamellae, synergistically contributes to a record‐high ballistic energy absorption capability (i.e., 2.1 kJ m−1), without sacrificing their high water content (i.e., 85 wt%) and superior softness. Together with its low‐cost and extraordinary energy dissipation capacity, the hydrogel materials present a durable alternative to conventional hydrogel materials for armor‐like protection circumstances.
Bioinspired hydrogels with lobster‐underbelly‐like properties are reported. By engineering the hierarchical structures, synthetic hydrogel materials can be enabled with the lobster‐underbelly‐like combinational properties, including high ballistic resistance, toughness, strength, water content, and superior softness.</description><subject>2D lamellar structures</subject><subject>ballistic resistance</subject><subject>crystalline materials</subject><subject>Energy absorption</subject><subject>Energy dissipation</subject><subject>Hydrogels</subject><subject>Impact resistance</subject><subject>Lamellar structure</subject><subject>Materials science</subject><subject>Moisture content</subject><subject>Softness</subject><subject>Structural hierarchy</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LwzAcx_EgipvTq0cpePHSmaRJkxzHNu1gIvhwDmmSzo4-zKRFevMl-Bp9JXZsKnjxlMsnP_58AThHcIwgxNfKlGqMIcaQUc4OwBBRjEICBT0EQygiGoqY8AE48X4NIRQxjI_BIIoxJ4TRIZgvyo3Szef7x4P1uW9U1QRJZ1y9soUP0i5IlKus93m1CvAsSHLrlNMvuVZF8Ni4Vjets_4UHGWq8PZs_47A8838aZqEy_vbxXSyDDVBEQtTrUyqDeE0TaHVVJBME2GwIKnJMmIVIlhwoQSxOiMYGUSZYIgTrAWnTEUjcLXb3bj6tbW-kWXutS0KVdm69RIzLCDmjLGeXv6h67p1VX9dr-K-FmI07tV4p7SrvXc2kxuXl8p1EkG5DSy3geVP4P7DxX62TUtrfvh30R6IHXjLC9v9Mycns7vJ7_gX1JGHrg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liang, Xiangyu</creator><creator>Chen, Guangda</creator><creator>Lei, Iek Man</creator><creator>Zhang, Pei</creator><creator>Wang, Zeyu</creator><creator>Chen, Xingmei</creator><creator>Lu, Mengze</creator><creator>Zhang, Jiajun</creator><creator>Wang, Zongbao</creator><creator>Sun, Taolin</creator><creator>Lan, Yang</creator><creator>Liu, Ji</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7171-405X</orcidid></search><sort><creationdate>20230101</creationdate><title>Impact‐Resistant Hydrogels by Harnessing 2D Hierarchical Structures</title><author>Liang, Xiangyu ; Chen, Guangda ; Lei, Iek Man ; Zhang, Pei ; Wang, Zeyu ; Chen, Xingmei ; Lu, Mengze ; Zhang, Jiajun ; Wang, Zongbao ; Sun, Taolin ; Lan, Yang ; Liu, Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4137-bcadbcd485bb0ec594fc49d294bdff4ea142989a94ecf421d157971842c9857a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2D lamellar structures</topic><topic>ballistic resistance</topic><topic>crystalline materials</topic><topic>Energy absorption</topic><topic>Energy dissipation</topic><topic>Hydrogels</topic><topic>Impact resistance</topic><topic>Lamellar structure</topic><topic>Materials science</topic><topic>Moisture content</topic><topic>Softness</topic><topic>Structural hierarchy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xiangyu</creatorcontrib><creatorcontrib>Chen, Guangda</creatorcontrib><creatorcontrib>Lei, Iek Man</creatorcontrib><creatorcontrib>Zhang, Pei</creatorcontrib><creatorcontrib>Wang, Zeyu</creatorcontrib><creatorcontrib>Chen, Xingmei</creatorcontrib><creatorcontrib>Lu, Mengze</creatorcontrib><creatorcontrib>Zhang, Jiajun</creatorcontrib><creatorcontrib>Wang, Zongbao</creatorcontrib><creatorcontrib>Sun, Taolin</creatorcontrib><creatorcontrib>Lan, Yang</creatorcontrib><creatorcontrib>Liu, Ji</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xiangyu</au><au>Chen, Guangda</au><au>Lei, Iek Man</au><au>Zhang, Pei</au><au>Wang, Zeyu</au><au>Chen, Xingmei</au><au>Lu, Mengze</au><au>Zhang, Jiajun</au><au>Wang, Zongbao</au><au>Sun, Taolin</au><au>Lan, Yang</au><au>Liu, Ji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact‐Resistant Hydrogels by Harnessing 2D Hierarchical Structures</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>35</volume><issue>1</issue><spage>e2207587</spage><epage>n/a</epage><pages>e2207587-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>With the strengthening capacity through harnessing multi‐length‐scale structural hierarchy, synthetic hydrogels hold tremendous promise as a low‐cost and abundant material for applications demanding unprecedented mechanical robustness. However, integrating high impact resistance and high water content, yet superior softness, in a single hydrogel material still remains a grand challenge. Here, a simple, yet effective, strategy involving bidirectional freeze‐casting and compression‐annealing is reported, leading to a hierarchically structured hydrogel material. Rational engineering of the distinct 2D lamellar structures, well‐defined nanocrystalline domains and robust interfacial interaction among the lamellae, synergistically contributes to a record‐high ballistic energy absorption capability (i.e., 2.1 kJ m−1), without sacrificing their high water content (i.e., 85 wt%) and superior softness. Together with its low‐cost and extraordinary energy dissipation capacity, the hydrogel materials present a durable alternative to conventional hydrogel materials for armor‐like protection circumstances.
Bioinspired hydrogels with lobster‐underbelly‐like properties are reported. By engineering the hierarchical structures, synthetic hydrogel materials can be enabled with the lobster‐underbelly‐like combinational properties, including high ballistic resistance, toughness, strength, water content, and superior softness.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36284475</pmid><doi>10.1002/adma.202207587</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7171-405X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-01, Vol.35 (1), p.e2207587-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2729028777 |
source | Access via Wiley Online Library |
subjects | 2D lamellar structures ballistic resistance crystalline materials Energy absorption Energy dissipation Hydrogels Impact resistance Lamellar structure Materials science Moisture content Softness Structural hierarchy |
title | Impact‐Resistant Hydrogels by Harnessing 2D Hierarchical Structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%E2%80%90Resistant%20Hydrogels%20by%20Harnessing%202D%20Hierarchical%20Structures&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liang,%20Xiangyu&rft.date=2023-01-01&rft.volume=35&rft.issue=1&rft.spage=e2207587&rft.epage=n/a&rft.pages=e2207587-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202207587&rft_dat=%3Cproquest_cross%3E2760751756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760751756&rft_id=info:pmid/36284475&rfr_iscdi=true |