Impact‐Resistant Hydrogels by Harnessing 2D Hierarchical Structures

With the strengthening capacity through harnessing multi‐length‐scale structural hierarchy, synthetic hydrogels hold tremendous promise as a low‐cost and abundant material for applications demanding unprecedented mechanical robustness. However, integrating high impact resistance and high water conte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-01, Vol.35 (1), p.e2207587-n/a
Hauptverfasser: Liang, Xiangyu, Chen, Guangda, Lei, Iek Man, Zhang, Pei, Wang, Zeyu, Chen, Xingmei, Lu, Mengze, Zhang, Jiajun, Wang, Zongbao, Sun, Taolin, Lan, Yang, Liu, Ji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e2207587
container_title Advanced materials (Weinheim)
container_volume 35
creator Liang, Xiangyu
Chen, Guangda
Lei, Iek Man
Zhang, Pei
Wang, Zeyu
Chen, Xingmei
Lu, Mengze
Zhang, Jiajun
Wang, Zongbao
Sun, Taolin
Lan, Yang
Liu, Ji
description With the strengthening capacity through harnessing multi‐length‐scale structural hierarchy, synthetic hydrogels hold tremendous promise as a low‐cost and abundant material for applications demanding unprecedented mechanical robustness. However, integrating high impact resistance and high water content, yet superior softness, in a single hydrogel material still remains a grand challenge. Here, a simple, yet effective, strategy involving bidirectional freeze‐casting and compression‐annealing is reported, leading to a hierarchically structured hydrogel material. Rational engineering of the distinct 2D lamellar structures, well‐defined nanocrystalline domains and robust interfacial interaction among the lamellae, synergistically contributes to a record‐high ballistic energy absorption capability (i.e., 2.1 kJ m−1), without sacrificing their high water content (i.e., 85 wt%) and superior softness. Together with its low‐cost and extraordinary energy dissipation capacity, the hydrogel materials present a durable alternative to conventional hydrogel materials for armor‐like protection circumstances. Bioinspired hydrogels with lobster‐underbelly‐like properties are reported. By engineering the hierarchical structures, synthetic hydrogel materials can be enabled with the lobster‐underbelly‐like combinational properties, including high ballistic resistance, toughness, strength, water content, and superior softness.
doi_str_mv 10.1002/adma.202207587
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2729028777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760751756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4137-bcadbcd485bb0ec594fc49d294bdff4ea142989a94ecf421d157971842c9857a3</originalsourceid><addsrcrecordid>eNqF0E1LwzAcx_EgipvTq0cpePHSmaRJkxzHNu1gIvhwDmmSzo4-zKRFevMl-Bp9JXZsKnjxlMsnP_58AThHcIwgxNfKlGqMIcaQUc4OwBBRjEICBT0EQygiGoqY8AE48X4NIRQxjI_BIIoxJ4TRIZgvyo3Szef7x4P1uW9U1QRJZ1y9soUP0i5IlKus93m1CvAsSHLrlNMvuVZF8Ni4Vjets_4UHGWq8PZs_47A8838aZqEy_vbxXSyDDVBEQtTrUyqDeE0TaHVVJBME2GwIKnJMmIVIlhwoQSxOiMYGUSZYIgTrAWnTEUjcLXb3bj6tbW-kWXutS0KVdm69RIzLCDmjLGeXv6h67p1VX9dr-K-FmI07tV4p7SrvXc2kxuXl8p1EkG5DSy3geVP4P7DxX62TUtrfvh30R6IHXjLC9v9Mycns7vJ7_gX1JGHrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760751756</pqid></control><display><type>article</type><title>Impact‐Resistant Hydrogels by Harnessing 2D Hierarchical Structures</title><source>Access via Wiley Online Library</source><creator>Liang, Xiangyu ; Chen, Guangda ; Lei, Iek Man ; Zhang, Pei ; Wang, Zeyu ; Chen, Xingmei ; Lu, Mengze ; Zhang, Jiajun ; Wang, Zongbao ; Sun, Taolin ; Lan, Yang ; Liu, Ji</creator><creatorcontrib>Liang, Xiangyu ; Chen, Guangda ; Lei, Iek Man ; Zhang, Pei ; Wang, Zeyu ; Chen, Xingmei ; Lu, Mengze ; Zhang, Jiajun ; Wang, Zongbao ; Sun, Taolin ; Lan, Yang ; Liu, Ji</creatorcontrib><description>With the strengthening capacity through harnessing multi‐length‐scale structural hierarchy, synthetic hydrogels hold tremendous promise as a low‐cost and abundant material for applications demanding unprecedented mechanical robustness. However, integrating high impact resistance and high water content, yet superior softness, in a single hydrogel material still remains a grand challenge. Here, a simple, yet effective, strategy involving bidirectional freeze‐casting and compression‐annealing is reported, leading to a hierarchically structured hydrogel material. Rational engineering of the distinct 2D lamellar structures, well‐defined nanocrystalline domains and robust interfacial interaction among the lamellae, synergistically contributes to a record‐high ballistic energy absorption capability (i.e., 2.1 kJ m−1), without sacrificing their high water content (i.e., 85 wt%) and superior softness. Together with its low‐cost and extraordinary energy dissipation capacity, the hydrogel materials present a durable alternative to conventional hydrogel materials for armor‐like protection circumstances. Bioinspired hydrogels with lobster‐underbelly‐like properties are reported. By engineering the hierarchical structures, synthetic hydrogel materials can be enabled with the lobster‐underbelly‐like combinational properties, including high ballistic resistance, toughness, strength, water content, and superior softness.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202207587</identifier><identifier>PMID: 36284475</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D lamellar structures ; ballistic resistance ; crystalline materials ; Energy absorption ; Energy dissipation ; Hydrogels ; Impact resistance ; Lamellar structure ; Materials science ; Moisture content ; Softness ; Structural hierarchy</subject><ispartof>Advanced materials (Weinheim), 2023-01, Vol.35 (1), p.e2207587-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4137-bcadbcd485bb0ec594fc49d294bdff4ea142989a94ecf421d157971842c9857a3</citedby><cites>FETCH-LOGICAL-c4137-bcadbcd485bb0ec594fc49d294bdff4ea142989a94ecf421d157971842c9857a3</cites><orcidid>0000-0001-7171-405X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202207587$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202207587$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27925,27926,45575,45576</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36284475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Xiangyu</creatorcontrib><creatorcontrib>Chen, Guangda</creatorcontrib><creatorcontrib>Lei, Iek Man</creatorcontrib><creatorcontrib>Zhang, Pei</creatorcontrib><creatorcontrib>Wang, Zeyu</creatorcontrib><creatorcontrib>Chen, Xingmei</creatorcontrib><creatorcontrib>Lu, Mengze</creatorcontrib><creatorcontrib>Zhang, Jiajun</creatorcontrib><creatorcontrib>Wang, Zongbao</creatorcontrib><creatorcontrib>Sun, Taolin</creatorcontrib><creatorcontrib>Lan, Yang</creatorcontrib><creatorcontrib>Liu, Ji</creatorcontrib><title>Impact‐Resistant Hydrogels by Harnessing 2D Hierarchical Structures</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>With the strengthening capacity through harnessing multi‐length‐scale structural hierarchy, synthetic hydrogels hold tremendous promise as a low‐cost and abundant material for applications demanding unprecedented mechanical robustness. However, integrating high impact resistance and high water content, yet superior softness, in a single hydrogel material still remains a grand challenge. Here, a simple, yet effective, strategy involving bidirectional freeze‐casting and compression‐annealing is reported, leading to a hierarchically structured hydrogel material. Rational engineering of the distinct 2D lamellar structures, well‐defined nanocrystalline domains and robust interfacial interaction among the lamellae, synergistically contributes to a record‐high ballistic energy absorption capability (i.e., 2.1 kJ m−1), without sacrificing their high water content (i.e., 85 wt%) and superior softness. Together with its low‐cost and extraordinary energy dissipation capacity, the hydrogel materials present a durable alternative to conventional hydrogel materials for armor‐like protection circumstances. Bioinspired hydrogels with lobster‐underbelly‐like properties are reported. By engineering the hierarchical structures, synthetic hydrogel materials can be enabled with the lobster‐underbelly‐like combinational properties, including high ballistic resistance, toughness, strength, water content, and superior softness.</description><subject>2D lamellar structures</subject><subject>ballistic resistance</subject><subject>crystalline materials</subject><subject>Energy absorption</subject><subject>Energy dissipation</subject><subject>Hydrogels</subject><subject>Impact resistance</subject><subject>Lamellar structure</subject><subject>Materials science</subject><subject>Moisture content</subject><subject>Softness</subject><subject>Structural hierarchy</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LwzAcx_EgipvTq0cpePHSmaRJkxzHNu1gIvhwDmmSzo4-zKRFevMl-Bp9JXZsKnjxlMsnP_58AThHcIwgxNfKlGqMIcaQUc4OwBBRjEICBT0EQygiGoqY8AE48X4NIRQxjI_BIIoxJ4TRIZgvyo3Szef7x4P1uW9U1QRJZ1y9soUP0i5IlKus93m1CvAsSHLrlNMvuVZF8Ni4Vjets_4UHGWq8PZs_47A8838aZqEy_vbxXSyDDVBEQtTrUyqDeE0TaHVVJBME2GwIKnJMmIVIlhwoQSxOiMYGUSZYIgTrAWnTEUjcLXb3bj6tbW-kWXutS0KVdm69RIzLCDmjLGeXv6h67p1VX9dr-K-FmI07tV4p7SrvXc2kxuXl8p1EkG5DSy3geVP4P7DxX62TUtrfvh30R6IHXjLC9v9Mycns7vJ7_gX1JGHrg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liang, Xiangyu</creator><creator>Chen, Guangda</creator><creator>Lei, Iek Man</creator><creator>Zhang, Pei</creator><creator>Wang, Zeyu</creator><creator>Chen, Xingmei</creator><creator>Lu, Mengze</creator><creator>Zhang, Jiajun</creator><creator>Wang, Zongbao</creator><creator>Sun, Taolin</creator><creator>Lan, Yang</creator><creator>Liu, Ji</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7171-405X</orcidid></search><sort><creationdate>20230101</creationdate><title>Impact‐Resistant Hydrogels by Harnessing 2D Hierarchical Structures</title><author>Liang, Xiangyu ; Chen, Guangda ; Lei, Iek Man ; Zhang, Pei ; Wang, Zeyu ; Chen, Xingmei ; Lu, Mengze ; Zhang, Jiajun ; Wang, Zongbao ; Sun, Taolin ; Lan, Yang ; Liu, Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4137-bcadbcd485bb0ec594fc49d294bdff4ea142989a94ecf421d157971842c9857a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2D lamellar structures</topic><topic>ballistic resistance</topic><topic>crystalline materials</topic><topic>Energy absorption</topic><topic>Energy dissipation</topic><topic>Hydrogels</topic><topic>Impact resistance</topic><topic>Lamellar structure</topic><topic>Materials science</topic><topic>Moisture content</topic><topic>Softness</topic><topic>Structural hierarchy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Xiangyu</creatorcontrib><creatorcontrib>Chen, Guangda</creatorcontrib><creatorcontrib>Lei, Iek Man</creatorcontrib><creatorcontrib>Zhang, Pei</creatorcontrib><creatorcontrib>Wang, Zeyu</creatorcontrib><creatorcontrib>Chen, Xingmei</creatorcontrib><creatorcontrib>Lu, Mengze</creatorcontrib><creatorcontrib>Zhang, Jiajun</creatorcontrib><creatorcontrib>Wang, Zongbao</creatorcontrib><creatorcontrib>Sun, Taolin</creatorcontrib><creatorcontrib>Lan, Yang</creatorcontrib><creatorcontrib>Liu, Ji</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Xiangyu</au><au>Chen, Guangda</au><au>Lei, Iek Man</au><au>Zhang, Pei</au><au>Wang, Zeyu</au><au>Chen, Xingmei</au><au>Lu, Mengze</au><au>Zhang, Jiajun</au><au>Wang, Zongbao</au><au>Sun, Taolin</au><au>Lan, Yang</au><au>Liu, Ji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact‐Resistant Hydrogels by Harnessing 2D Hierarchical Structures</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>35</volume><issue>1</issue><spage>e2207587</spage><epage>n/a</epage><pages>e2207587-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>With the strengthening capacity through harnessing multi‐length‐scale structural hierarchy, synthetic hydrogels hold tremendous promise as a low‐cost and abundant material for applications demanding unprecedented mechanical robustness. However, integrating high impact resistance and high water content, yet superior softness, in a single hydrogel material still remains a grand challenge. Here, a simple, yet effective, strategy involving bidirectional freeze‐casting and compression‐annealing is reported, leading to a hierarchically structured hydrogel material. Rational engineering of the distinct 2D lamellar structures, well‐defined nanocrystalline domains and robust interfacial interaction among the lamellae, synergistically contributes to a record‐high ballistic energy absorption capability (i.e., 2.1 kJ m−1), without sacrificing their high water content (i.e., 85 wt%) and superior softness. Together with its low‐cost and extraordinary energy dissipation capacity, the hydrogel materials present a durable alternative to conventional hydrogel materials for armor‐like protection circumstances. Bioinspired hydrogels with lobster‐underbelly‐like properties are reported. By engineering the hierarchical structures, synthetic hydrogel materials can be enabled with the lobster‐underbelly‐like combinational properties, including high ballistic resistance, toughness, strength, water content, and superior softness.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36284475</pmid><doi>10.1002/adma.202207587</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7171-405X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-01, Vol.35 (1), p.e2207587-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2729028777
source Access via Wiley Online Library
subjects 2D lamellar structures
ballistic resistance
crystalline materials
Energy absorption
Energy dissipation
Hydrogels
Impact resistance
Lamellar structure
Materials science
Moisture content
Softness
Structural hierarchy
title Impact‐Resistant Hydrogels by Harnessing 2D Hierarchical Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%E2%80%90Resistant%20Hydrogels%20by%20Harnessing%202D%20Hierarchical%20Structures&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liang,%20Xiangyu&rft.date=2023-01-01&rft.volume=35&rft.issue=1&rft.spage=e2207587&rft.epage=n/a&rft.pages=e2207587-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202207587&rft_dat=%3Cproquest_cross%3E2760751756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760751756&rft_id=info:pmid/36284475&rfr_iscdi=true