Defect-engineered room temperature negative differential resistance in monolayer MoS2 transistors
The negative differential resistance (NDR) effect has been widely investigated for the development of various electronic devices. Apart from traditional semiconductor-based devices, two-dimensional (2D) transition metal dichalcogenide (TMD)-based field-effect transistors (FETs) have also recently ex...
Gespeichert in:
Veröffentlicht in: | Nanoscale horizons 2022-11, Vol.7 (12), p.1533-1539 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1539 |
---|---|
container_issue | 12 |
container_start_page | 1533 |
container_title | Nanoscale horizons |
container_volume | 7 |
creator | Wen-Hao, Chang Lu, Chun-I Yang, Tilo H Shu-Ting, Yang Simbulan, Kristan Bryan Lin, Chih-Pin Hsieh, Shang-Hsien Chen, Jyun-Hong Kai-Shin, Li Chia-Hao, Chen Tuo-Hung Hou Ting-Hua, Lu Yann-Wen Lan |
description | The negative differential resistance (NDR) effect has been widely investigated for the development of various electronic devices. Apart from traditional semiconductor-based devices, two-dimensional (2D) transition metal dichalcogenide (TMD)-based field-effect transistors (FETs) have also recently exhibited NDR behavior in several of their heterostructures. However, to observe NDR in the form of monolayer MoS2, theoretical prediction has revealed that the material should be more profoundly affected by sulfur (S) vacancy defects. In this work, monolayer MoS2 FETs with a specific amount of S-vacancy defects are fabricated using three approaches, namely chemical treatment (KOH solution), physical treatment (electron beam bombardment), and as-grown MoS2. Based on systematic studies on the correlation of the S-vacancies with both the device's electron transport characteristics and spectroscopic analysis, the NDR has been clearly observed in the defect-engineered monolayer MoS2 FETs with an S-vacancy (VS) amount of ∼5 ± 0.5%. Consequently, stable NDR behavior can be observed at room temperature, and its peak-to-valley ratio can also be effectively modulated via the gate electric field and light intensity. Through these results, it is envisioned that more electronic applications based on defect-engineered layered TMDs will emerge in the near future. |
doi_str_mv | 10.1039/d2nh00396a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2729025829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729025829</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-b923377027d0211235a9d0a7f19bd3250e3aef6990b078fac2033d5025dabd3</originalsourceid><addsrcrecordid>eNpdzk9LxDAQBfAgCi7rXvwEAS9eqpNk2zRHWf_Ciof1vkybydqlTdYkFfz2VvQgnubB-_EYxs4FXAlQ5tpK_wZTqPCIzSSUZVHpann8J5-yRUp7ABC10KZWM4a35KjNBfld54kiWR5DGHim4UAR8xiJe9ph7j6I2865ifjcYc8jpS5l9C3xzvMh-NDjJ0X-HDaS54j-uw4xnbETh32ixe-ds8393evqsVi_PDytbtbFQYoqF42RSmkNUluQQkhVorGA2gnTWCVLIIXkKmOgAV07bCUoZUuQpcUJzNnlz-ohhveRUt4OXWqp79FTGNNWamkmW0sz0Yt_dB_G6KffJqVqIUSll-oLHtNlSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738111674</pqid></control><display><type>article</type><title>Defect-engineered room temperature negative differential resistance in monolayer MoS2 transistors</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wen-Hao, Chang ; Lu, Chun-I ; Yang, Tilo H ; Shu-Ting, Yang ; Simbulan, Kristan Bryan ; Lin, Chih-Pin ; Hsieh, Shang-Hsien ; Chen, Jyun-Hong ; Kai-Shin, Li ; Chia-Hao, Chen ; Tuo-Hung Hou ; Ting-Hua, Lu ; Yann-Wen Lan</creator><creatorcontrib>Wen-Hao, Chang ; Lu, Chun-I ; Yang, Tilo H ; Shu-Ting, Yang ; Simbulan, Kristan Bryan ; Lin, Chih-Pin ; Hsieh, Shang-Hsien ; Chen, Jyun-Hong ; Kai-Shin, Li ; Chia-Hao, Chen ; Tuo-Hung Hou ; Ting-Hua, Lu ; Yann-Wen Lan</creatorcontrib><description>The negative differential resistance (NDR) effect has been widely investigated for the development of various electronic devices. Apart from traditional semiconductor-based devices, two-dimensional (2D) transition metal dichalcogenide (TMD)-based field-effect transistors (FETs) have also recently exhibited NDR behavior in several of their heterostructures. However, to observe NDR in the form of monolayer MoS2, theoretical prediction has revealed that the material should be more profoundly affected by sulfur (S) vacancy defects. In this work, monolayer MoS2 FETs with a specific amount of S-vacancy defects are fabricated using three approaches, namely chemical treatment (KOH solution), physical treatment (electron beam bombardment), and as-grown MoS2. Based on systematic studies on the correlation of the S-vacancies with both the device's electron transport characteristics and spectroscopic analysis, the NDR has been clearly observed in the defect-engineered monolayer MoS2 FETs with an S-vacancy (VS) amount of ∼5 ± 0.5%. Consequently, stable NDR behavior can be observed at room temperature, and its peak-to-valley ratio can also be effectively modulated via the gate electric field and light intensity. Through these results, it is envisioned that more electronic applications based on defect-engineered layered TMDs will emerge in the near future.</description><identifier>ISSN: 2055-6764</identifier><identifier>EISSN: 2055-6764</identifier><identifier>DOI: 10.1039/d2nh00396a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chemical treatment ; Defects ; Electric fields ; Electron beams ; Electron bombardment ; Electron transport ; Electronic devices ; Field effect transistors ; Heterostructures ; Luminous intensity ; Molybdenum disulfide ; Monolayers ; Room temperature ; Semiconductor devices ; Transistors ; Transition metal compounds ; Transport properties</subject><ispartof>Nanoscale horizons, 2022-11, Vol.7 (12), p.1533-1539</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wen-Hao, Chang</creatorcontrib><creatorcontrib>Lu, Chun-I</creatorcontrib><creatorcontrib>Yang, Tilo H</creatorcontrib><creatorcontrib>Shu-Ting, Yang</creatorcontrib><creatorcontrib>Simbulan, Kristan Bryan</creatorcontrib><creatorcontrib>Lin, Chih-Pin</creatorcontrib><creatorcontrib>Hsieh, Shang-Hsien</creatorcontrib><creatorcontrib>Chen, Jyun-Hong</creatorcontrib><creatorcontrib>Kai-Shin, Li</creatorcontrib><creatorcontrib>Chia-Hao, Chen</creatorcontrib><creatorcontrib>Tuo-Hung Hou</creatorcontrib><creatorcontrib>Ting-Hua, Lu</creatorcontrib><creatorcontrib>Yann-Wen Lan</creatorcontrib><title>Defect-engineered room temperature negative differential resistance in monolayer MoS2 transistors</title><title>Nanoscale horizons</title><description>The negative differential resistance (NDR) effect has been widely investigated for the development of various electronic devices. Apart from traditional semiconductor-based devices, two-dimensional (2D) transition metal dichalcogenide (TMD)-based field-effect transistors (FETs) have also recently exhibited NDR behavior in several of their heterostructures. However, to observe NDR in the form of monolayer MoS2, theoretical prediction has revealed that the material should be more profoundly affected by sulfur (S) vacancy defects. In this work, monolayer MoS2 FETs with a specific amount of S-vacancy defects are fabricated using three approaches, namely chemical treatment (KOH solution), physical treatment (electron beam bombardment), and as-grown MoS2. Based on systematic studies on the correlation of the S-vacancies with both the device's electron transport characteristics and spectroscopic analysis, the NDR has been clearly observed in the defect-engineered monolayer MoS2 FETs with an S-vacancy (VS) amount of ∼5 ± 0.5%. Consequently, stable NDR behavior can be observed at room temperature, and its peak-to-valley ratio can also be effectively modulated via the gate electric field and light intensity. Through these results, it is envisioned that more electronic applications based on defect-engineered layered TMDs will emerge in the near future.</description><subject>Chemical treatment</subject><subject>Defects</subject><subject>Electric fields</subject><subject>Electron beams</subject><subject>Electron bombardment</subject><subject>Electron transport</subject><subject>Electronic devices</subject><subject>Field effect transistors</subject><subject>Heterostructures</subject><subject>Luminous intensity</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>Room temperature</subject><subject>Semiconductor devices</subject><subject>Transistors</subject><subject>Transition metal compounds</subject><subject>Transport properties</subject><issn>2055-6764</issn><issn>2055-6764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdzk9LxDAQBfAgCi7rXvwEAS9eqpNk2zRHWf_Ciof1vkybydqlTdYkFfz2VvQgnubB-_EYxs4FXAlQ5tpK_wZTqPCIzSSUZVHpann8J5-yRUp7ABC10KZWM4a35KjNBfld54kiWR5DGHim4UAR8xiJe9ph7j6I2865ifjcYc8jpS5l9C3xzvMh-NDjJ0X-HDaS54j-uw4xnbETh32ixe-ds8393evqsVi_PDytbtbFQYoqF42RSmkNUluQQkhVorGA2gnTWCVLIIXkKmOgAV07bCUoZUuQpcUJzNnlz-ohhveRUt4OXWqp79FTGNNWamkmW0sz0Yt_dB_G6KffJqVqIUSll-oLHtNlSw</recordid><startdate>20221121</startdate><enddate>20221121</enddate><creator>Wen-Hao, Chang</creator><creator>Lu, Chun-I</creator><creator>Yang, Tilo H</creator><creator>Shu-Ting, Yang</creator><creator>Simbulan, Kristan Bryan</creator><creator>Lin, Chih-Pin</creator><creator>Hsieh, Shang-Hsien</creator><creator>Chen, Jyun-Hong</creator><creator>Kai-Shin, Li</creator><creator>Chia-Hao, Chen</creator><creator>Tuo-Hung Hou</creator><creator>Ting-Hua, Lu</creator><creator>Yann-Wen Lan</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20221121</creationdate><title>Defect-engineered room temperature negative differential resistance in monolayer MoS2 transistors</title><author>Wen-Hao, Chang ; Lu, Chun-I ; Yang, Tilo H ; Shu-Ting, Yang ; Simbulan, Kristan Bryan ; Lin, Chih-Pin ; Hsieh, Shang-Hsien ; Chen, Jyun-Hong ; Kai-Shin, Li ; Chia-Hao, Chen ; Tuo-Hung Hou ; Ting-Hua, Lu ; Yann-Wen Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-b923377027d0211235a9d0a7f19bd3250e3aef6990b078fac2033d5025dabd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical treatment</topic><topic>Defects</topic><topic>Electric fields</topic><topic>Electron beams</topic><topic>Electron bombardment</topic><topic>Electron transport</topic><topic>Electronic devices</topic><topic>Field effect transistors</topic><topic>Heterostructures</topic><topic>Luminous intensity</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>Room temperature</topic><topic>Semiconductor devices</topic><topic>Transistors</topic><topic>Transition metal compounds</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen-Hao, Chang</creatorcontrib><creatorcontrib>Lu, Chun-I</creatorcontrib><creatorcontrib>Yang, Tilo H</creatorcontrib><creatorcontrib>Shu-Ting, Yang</creatorcontrib><creatorcontrib>Simbulan, Kristan Bryan</creatorcontrib><creatorcontrib>Lin, Chih-Pin</creatorcontrib><creatorcontrib>Hsieh, Shang-Hsien</creatorcontrib><creatorcontrib>Chen, Jyun-Hong</creatorcontrib><creatorcontrib>Kai-Shin, Li</creatorcontrib><creatorcontrib>Chia-Hao, Chen</creatorcontrib><creatorcontrib>Tuo-Hung Hou</creatorcontrib><creatorcontrib>Ting-Hua, Lu</creatorcontrib><creatorcontrib>Yann-Wen Lan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale horizons</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen-Hao, Chang</au><au>Lu, Chun-I</au><au>Yang, Tilo H</au><au>Shu-Ting, Yang</au><au>Simbulan, Kristan Bryan</au><au>Lin, Chih-Pin</au><au>Hsieh, Shang-Hsien</au><au>Chen, Jyun-Hong</au><au>Kai-Shin, Li</au><au>Chia-Hao, Chen</au><au>Tuo-Hung Hou</au><au>Ting-Hua, Lu</au><au>Yann-Wen Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect-engineered room temperature negative differential resistance in monolayer MoS2 transistors</atitle><jtitle>Nanoscale horizons</jtitle><date>2022-11-21</date><risdate>2022</risdate><volume>7</volume><issue>12</issue><spage>1533</spage><epage>1539</epage><pages>1533-1539</pages><issn>2055-6764</issn><eissn>2055-6764</eissn><abstract>The negative differential resistance (NDR) effect has been widely investigated for the development of various electronic devices. Apart from traditional semiconductor-based devices, two-dimensional (2D) transition metal dichalcogenide (TMD)-based field-effect transistors (FETs) have also recently exhibited NDR behavior in several of their heterostructures. However, to observe NDR in the form of monolayer MoS2, theoretical prediction has revealed that the material should be more profoundly affected by sulfur (S) vacancy defects. In this work, monolayer MoS2 FETs with a specific amount of S-vacancy defects are fabricated using three approaches, namely chemical treatment (KOH solution), physical treatment (electron beam bombardment), and as-grown MoS2. Based on systematic studies on the correlation of the S-vacancies with both the device's electron transport characteristics and spectroscopic analysis, the NDR has been clearly observed in the defect-engineered monolayer MoS2 FETs with an S-vacancy (VS) amount of ∼5 ± 0.5%. Consequently, stable NDR behavior can be observed at room temperature, and its peak-to-valley ratio can also be effectively modulated via the gate electric field and light intensity. Through these results, it is envisioned that more electronic applications based on defect-engineered layered TMDs will emerge in the near future.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2nh00396a</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-6764 |
ispartof | Nanoscale horizons, 2022-11, Vol.7 (12), p.1533-1539 |
issn | 2055-6764 2055-6764 |
language | eng |
recordid | cdi_proquest_miscellaneous_2729025829 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Chemical treatment Defects Electric fields Electron beams Electron bombardment Electron transport Electronic devices Field effect transistors Heterostructures Luminous intensity Molybdenum disulfide Monolayers Room temperature Semiconductor devices Transistors Transition metal compounds Transport properties |
title | Defect-engineered room temperature negative differential resistance in monolayer MoS2 transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect-engineered%20room%20temperature%20negative%20differential%20resistance%20in%20monolayer%20MoS2%20transistors&rft.jtitle=Nanoscale%20horizons&rft.au=Wen-Hao,%20Chang&rft.date=2022-11-21&rft.volume=7&rft.issue=12&rft.spage=1533&rft.epage=1539&rft.pages=1533-1539&rft.issn=2055-6764&rft.eissn=2055-6764&rft_id=info:doi/10.1039/d2nh00396a&rft_dat=%3Cproquest%3E2729025829%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738111674&rft_id=info:pmid/&rfr_iscdi=true |