Heterogeneous Strain Distribution Based Programmable Gated Microchannel for Ultrasensitive and Stable Strain Sensing
Developing highly sensitive strain sensors requires conduction pathways capable of rapidly switching between disconnection and reconnection in response to strain. Ion channels in living organisms exactly control the channel switch through protein‐composed gates, achieving changeable ion currents. He...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-01, Vol.35 (2), p.e2207141-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e2207141 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Luo, Yongsong Chen, Xiaoliang Li, Xiangming Tian, Hongmiao Li, Sheng Wang, Liang He, Juan Yang, Zhengbing Shao, Jinyou |
description | Developing highly sensitive strain sensors requires conduction pathways capable of rapidly switching between disconnection and reconnection in response to strain. Ion channels in living organisms exactly control the channel switch through protein‐composed gates, achieving changeable ion currents. Herein, inspired by the gating characteristics of the ion channels, a programmable fluidic strain sensor enhanced by gating ion pathways through heterogeneous strain distribution of discrete micropillars is proposed. During stretching, the contraction and closure of the widthwise gaps between discrete micropillars greatly weaken or even nearly cut off the conduction pathway, resulting in orders of magnitude increase in resistance and thus ultrahigh sensitivity. By adjusting the combination form and structural parameters of the discrete micropillars in the fluidic channel, the sensitivity and strain range can be customized. Thus, a gauge factor of up to 45 300 and a stretch range of 590% are obtained. Benefiting from the fluidic gating mechanism, no mechanical mismatch can be observed at the interface, breaking through the sensing stability issue of flexible sensors. The proposed sensor can be used to detect the full range of human motion, and integrated into a data glove to achieve human–machine interaction.
Inspired by the ion channels in living organisms, discretely distributed laterally free micropillars are introduced into the fluidic channel to act as the gates and construct a gated strain sensor with the conductive liquid infiltrated within the gaps, obtaining a high gauge factor of up to 45 300, wide broad range of 590%, and great stability of 90 000 drift‐free cycling tests. |
doi_str_mv | 10.1002/adma.202207141 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2728467853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2764766981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-a44b25663b09be6a5011c156cd862b186d81afd4c7ce0a4d2f4c7163febcc2ca3</originalsourceid><addsrcrecordid>eNqFkUtLxDAURoMoOj62LqXgxk3HJE3TdDm-RkFRUNflNr0dI22qSavMvzfjjCO4cZWQnO9wLx8hh4yOGaX8FKoWxpxyTjMm2AYZsZSzWNA83SQjmidpnEuhdsiu96-U0lxSuU12EskVU1SMSH-NPbpuhha7wUePvQNjowvje2fKoTedjc7AYxU9BMhB20LZYDSFPjzdGe06_QLWYhPVnYuemxD3aL3pzQdGYKsg_A6svI-LPzvbJ1s1NB4PVuceeb66fDq_jm_vpzfnk9tYJ1nCYhCi5KmUSUnzEiWklDHNUqkrJXnJlKwUg7oSOtNIQVS8DlcmkxpLrbmGZI-cLL1vrnsf0PdFa7zGpoHvbQuecSVkptIkoMd_0NducDZMFygpMilzxQI1XlJhce8d1sWbMy24ecFoseijWPRRrPsIgaOVdihbrNb4TwEByJfAp2lw_o-umFzcTX7lXw1ymHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2764766981</pqid></control><display><type>article</type><title>Heterogeneous Strain Distribution Based Programmable Gated Microchannel for Ultrasensitive and Stable Strain Sensing</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Luo, Yongsong ; Chen, Xiaoliang ; Li, Xiangming ; Tian, Hongmiao ; Li, Sheng ; Wang, Liang ; He, Juan ; Yang, Zhengbing ; Shao, Jinyou</creator><creatorcontrib>Luo, Yongsong ; Chen, Xiaoliang ; Li, Xiangming ; Tian, Hongmiao ; Li, Sheng ; Wang, Liang ; He, Juan ; Yang, Zhengbing ; Shao, Jinyou</creatorcontrib><description>Developing highly sensitive strain sensors requires conduction pathways capable of rapidly switching between disconnection and reconnection in response to strain. Ion channels in living organisms exactly control the channel switch through protein‐composed gates, achieving changeable ion currents. Herein, inspired by the gating characteristics of the ion channels, a programmable fluidic strain sensor enhanced by gating ion pathways through heterogeneous strain distribution of discrete micropillars is proposed. During stretching, the contraction and closure of the widthwise gaps between discrete micropillars greatly weaken or even nearly cut off the conduction pathway, resulting in orders of magnitude increase in resistance and thus ultrahigh sensitivity. By adjusting the combination form and structural parameters of the discrete micropillars in the fluidic channel, the sensitivity and strain range can be customized. Thus, a gauge factor of up to 45 300 and a stretch range of 590% are obtained. Benefiting from the fluidic gating mechanism, no mechanical mismatch can be observed at the interface, breaking through the sensing stability issue of flexible sensors. The proposed sensor can be used to detect the full range of human motion, and integrated into a data glove to achieve human–machine interaction.
Inspired by the ion channels in living organisms, discretely distributed laterally free micropillars are introduced into the fluidic channel to act as the gates and construct a gated strain sensor with the conductive liquid infiltrated within the gaps, obtaining a high gauge factor of up to 45 300, wide broad range of 590%, and great stability of 90 000 drift‐free cycling tests.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202207141</identifier><identifier>PMID: 36281804</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bioinspiration ; Biosensing Techniques ; Flexible components ; fluids ; gated microchannels ; high sensitivity ; Human motion ; Humans ; Interface stability ; Ion Channels ; Ion currents ; Materials science ; Microchannels ; Motion ; Parameter sensitivity ; Sensitivity ; Sensors ; Strain distribution ; strain sensing</subject><ispartof>Advanced materials (Weinheim), 2023-01, Vol.35 (2), p.e2207141-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-a44b25663b09be6a5011c156cd862b186d81afd4c7ce0a4d2f4c7163febcc2ca3</citedby><cites>FETCH-LOGICAL-c3731-a44b25663b09be6a5011c156cd862b186d81afd4c7ce0a4d2f4c7163febcc2ca3</cites><orcidid>0000-0003-2525-4587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202207141$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202207141$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36281804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Yongsong</creatorcontrib><creatorcontrib>Chen, Xiaoliang</creatorcontrib><creatorcontrib>Li, Xiangming</creatorcontrib><creatorcontrib>Tian, Hongmiao</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>He, Juan</creatorcontrib><creatorcontrib>Yang, Zhengbing</creatorcontrib><creatorcontrib>Shao, Jinyou</creatorcontrib><title>Heterogeneous Strain Distribution Based Programmable Gated Microchannel for Ultrasensitive and Stable Strain Sensing</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Developing highly sensitive strain sensors requires conduction pathways capable of rapidly switching between disconnection and reconnection in response to strain. Ion channels in living organisms exactly control the channel switch through protein‐composed gates, achieving changeable ion currents. Herein, inspired by the gating characteristics of the ion channels, a programmable fluidic strain sensor enhanced by gating ion pathways through heterogeneous strain distribution of discrete micropillars is proposed. During stretching, the contraction and closure of the widthwise gaps between discrete micropillars greatly weaken or even nearly cut off the conduction pathway, resulting in orders of magnitude increase in resistance and thus ultrahigh sensitivity. By adjusting the combination form and structural parameters of the discrete micropillars in the fluidic channel, the sensitivity and strain range can be customized. Thus, a gauge factor of up to 45 300 and a stretch range of 590% are obtained. Benefiting from the fluidic gating mechanism, no mechanical mismatch can be observed at the interface, breaking through the sensing stability issue of flexible sensors. The proposed sensor can be used to detect the full range of human motion, and integrated into a data glove to achieve human–machine interaction.
Inspired by the ion channels in living organisms, discretely distributed laterally free micropillars are introduced into the fluidic channel to act as the gates and construct a gated strain sensor with the conductive liquid infiltrated within the gaps, obtaining a high gauge factor of up to 45 300, wide broad range of 590%, and great stability of 90 000 drift‐free cycling tests.</description><subject>bioinspiration</subject><subject>Biosensing Techniques</subject><subject>Flexible components</subject><subject>fluids</subject><subject>gated microchannels</subject><subject>high sensitivity</subject><subject>Human motion</subject><subject>Humans</subject><subject>Interface stability</subject><subject>Ion Channels</subject><subject>Ion currents</subject><subject>Materials science</subject><subject>Microchannels</subject><subject>Motion</subject><subject>Parameter sensitivity</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Strain distribution</subject><subject>strain sensing</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAURoMoOj62LqXgxk3HJE3TdDm-RkFRUNflNr0dI22qSavMvzfjjCO4cZWQnO9wLx8hh4yOGaX8FKoWxpxyTjMm2AYZsZSzWNA83SQjmidpnEuhdsiu96-U0lxSuU12EskVU1SMSH-NPbpuhha7wUePvQNjowvje2fKoTedjc7AYxU9BMhB20LZYDSFPjzdGe06_QLWYhPVnYuemxD3aL3pzQdGYKsg_A6svI-LPzvbJ1s1NB4PVuceeb66fDq_jm_vpzfnk9tYJ1nCYhCi5KmUSUnzEiWklDHNUqkrJXnJlKwUg7oSOtNIQVS8DlcmkxpLrbmGZI-cLL1vrnsf0PdFa7zGpoHvbQuecSVkptIkoMd_0NducDZMFygpMilzxQI1XlJhce8d1sWbMy24ecFoseijWPRRrPsIgaOVdihbrNb4TwEByJfAp2lw_o-umFzcTX7lXw1ymHY</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Luo, Yongsong</creator><creator>Chen, Xiaoliang</creator><creator>Li, Xiangming</creator><creator>Tian, Hongmiao</creator><creator>Li, Sheng</creator><creator>Wang, Liang</creator><creator>He, Juan</creator><creator>Yang, Zhengbing</creator><creator>Shao, Jinyou</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2525-4587</orcidid></search><sort><creationdate>202301</creationdate><title>Heterogeneous Strain Distribution Based Programmable Gated Microchannel for Ultrasensitive and Stable Strain Sensing</title><author>Luo, Yongsong ; Chen, Xiaoliang ; Li, Xiangming ; Tian, Hongmiao ; Li, Sheng ; Wang, Liang ; He, Juan ; Yang, Zhengbing ; Shao, Jinyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-a44b25663b09be6a5011c156cd862b186d81afd4c7ce0a4d2f4c7163febcc2ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bioinspiration</topic><topic>Biosensing Techniques</topic><topic>Flexible components</topic><topic>fluids</topic><topic>gated microchannels</topic><topic>high sensitivity</topic><topic>Human motion</topic><topic>Humans</topic><topic>Interface stability</topic><topic>Ion Channels</topic><topic>Ion currents</topic><topic>Materials science</topic><topic>Microchannels</topic><topic>Motion</topic><topic>Parameter sensitivity</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Strain distribution</topic><topic>strain sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Yongsong</creatorcontrib><creatorcontrib>Chen, Xiaoliang</creatorcontrib><creatorcontrib>Li, Xiangming</creatorcontrib><creatorcontrib>Tian, Hongmiao</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>He, Juan</creatorcontrib><creatorcontrib>Yang, Zhengbing</creatorcontrib><creatorcontrib>Shao, Jinyou</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Yongsong</au><au>Chen, Xiaoliang</au><au>Li, Xiangming</au><au>Tian, Hongmiao</au><au>Li, Sheng</au><au>Wang, Liang</au><au>He, Juan</au><au>Yang, Zhengbing</au><au>Shao, Jinyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous Strain Distribution Based Programmable Gated Microchannel for Ultrasensitive and Stable Strain Sensing</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-01</date><risdate>2023</risdate><volume>35</volume><issue>2</issue><spage>e2207141</spage><epage>n/a</epage><pages>e2207141-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Developing highly sensitive strain sensors requires conduction pathways capable of rapidly switching between disconnection and reconnection in response to strain. Ion channels in living organisms exactly control the channel switch through protein‐composed gates, achieving changeable ion currents. Herein, inspired by the gating characteristics of the ion channels, a programmable fluidic strain sensor enhanced by gating ion pathways through heterogeneous strain distribution of discrete micropillars is proposed. During stretching, the contraction and closure of the widthwise gaps between discrete micropillars greatly weaken or even nearly cut off the conduction pathway, resulting in orders of magnitude increase in resistance and thus ultrahigh sensitivity. By adjusting the combination form and structural parameters of the discrete micropillars in the fluidic channel, the sensitivity and strain range can be customized. Thus, a gauge factor of up to 45 300 and a stretch range of 590% are obtained. Benefiting from the fluidic gating mechanism, no mechanical mismatch can be observed at the interface, breaking through the sensing stability issue of flexible sensors. The proposed sensor can be used to detect the full range of human motion, and integrated into a data glove to achieve human–machine interaction.
Inspired by the ion channels in living organisms, discretely distributed laterally free micropillars are introduced into the fluidic channel to act as the gates and construct a gated strain sensor with the conductive liquid infiltrated within the gaps, obtaining a high gauge factor of up to 45 300, wide broad range of 590%, and great stability of 90 000 drift‐free cycling tests.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36281804</pmid><doi>10.1002/adma.202207141</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2525-4587</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-01, Vol.35 (2), p.e2207141-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2728467853 |
source | MEDLINE; Access via Wiley Online Library |
subjects | bioinspiration Biosensing Techniques Flexible components fluids gated microchannels high sensitivity Human motion Humans Interface stability Ion Channels Ion currents Materials science Microchannels Motion Parameter sensitivity Sensitivity Sensors Strain distribution strain sensing |
title | Heterogeneous Strain Distribution Based Programmable Gated Microchannel for Ultrasensitive and Stable Strain Sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20Strain%20Distribution%20Based%20Programmable%20Gated%20Microchannel%20for%20Ultrasensitive%20and%20Stable%20Strain%20Sensing&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Luo,%20Yongsong&rft.date=2023-01&rft.volume=35&rft.issue=2&rft.spage=e2207141&rft.epage=n/a&rft.pages=e2207141-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202207141&rft_dat=%3Cproquest_cross%3E2764766981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2764766981&rft_id=info:pmid/36281804&rfr_iscdi=true |