Heterogeneous Strain Distribution Based Programmable Gated Microchannel for Ultrasensitive and Stable Strain Sensing

Developing highly sensitive strain sensors requires conduction pathways capable of rapidly switching between disconnection and reconnection in response to strain. Ion channels in living organisms exactly control the channel switch through protein‐composed gates, achieving changeable ion currents. He...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-01, Vol.35 (2), p.e2207141-n/a
Hauptverfasser: Luo, Yongsong, Chen, Xiaoliang, Li, Xiangming, Tian, Hongmiao, Li, Sheng, Wang, Liang, He, Juan, Yang, Zhengbing, Shao, Jinyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e2207141
container_title Advanced materials (Weinheim)
container_volume 35
creator Luo, Yongsong
Chen, Xiaoliang
Li, Xiangming
Tian, Hongmiao
Li, Sheng
Wang, Liang
He, Juan
Yang, Zhengbing
Shao, Jinyou
description Developing highly sensitive strain sensors requires conduction pathways capable of rapidly switching between disconnection and reconnection in response to strain. Ion channels in living organisms exactly control the channel switch through protein‐composed gates, achieving changeable ion currents. Herein, inspired by the gating characteristics of the ion channels, a programmable fluidic strain sensor enhanced by gating ion pathways through heterogeneous strain distribution of discrete micropillars is proposed. During stretching, the contraction and closure of the widthwise gaps between discrete micropillars greatly weaken or even nearly cut off the conduction pathway, resulting in orders of magnitude increase in resistance and thus ultrahigh sensitivity. By adjusting the combination form and structural parameters of the discrete micropillars in the fluidic channel, the sensitivity and strain range can be customized. Thus, a gauge factor of up to 45 300 and a stretch range of 590% are obtained. Benefiting from the fluidic gating mechanism, no mechanical mismatch can be observed at the interface, breaking through the sensing stability issue of flexible sensors. The proposed sensor can be used to detect the full range of human motion, and integrated into a data glove to achieve human–machine interaction. Inspired by the ion channels in living organisms, discretely distributed laterally free micropillars are introduced into the fluidic channel to act as the gates and construct a gated strain sensor with the conductive liquid infiltrated within the gaps, obtaining a high gauge factor of up to 45 300, wide broad range of 590%, and great stability of 90 000 drift‐free cycling tests.
doi_str_mv 10.1002/adma.202207141
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2728467853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2764766981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-a44b25663b09be6a5011c156cd862b186d81afd4c7ce0a4d2f4c7163febcc2ca3</originalsourceid><addsrcrecordid>eNqFkUtLxDAURoMoOj62LqXgxk3HJE3TdDm-RkFRUNflNr0dI22qSavMvzfjjCO4cZWQnO9wLx8hh4yOGaX8FKoWxpxyTjMm2AYZsZSzWNA83SQjmidpnEuhdsiu96-U0lxSuU12EskVU1SMSH-NPbpuhha7wUePvQNjowvje2fKoTedjc7AYxU9BMhB20LZYDSFPjzdGe06_QLWYhPVnYuemxD3aL3pzQdGYKsg_A6svI-LPzvbJ1s1NB4PVuceeb66fDq_jm_vpzfnk9tYJ1nCYhCi5KmUSUnzEiWklDHNUqkrJXnJlKwUg7oSOtNIQVS8DlcmkxpLrbmGZI-cLL1vrnsf0PdFa7zGpoHvbQuecSVkptIkoMd_0NducDZMFygpMilzxQI1XlJhce8d1sWbMy24ecFoseijWPRRrPsIgaOVdihbrNb4TwEByJfAp2lw_o-umFzcTX7lXw1ymHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2764766981</pqid></control><display><type>article</type><title>Heterogeneous Strain Distribution Based Programmable Gated Microchannel for Ultrasensitive and Stable Strain Sensing</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Luo, Yongsong ; Chen, Xiaoliang ; Li, Xiangming ; Tian, Hongmiao ; Li, Sheng ; Wang, Liang ; He, Juan ; Yang, Zhengbing ; Shao, Jinyou</creator><creatorcontrib>Luo, Yongsong ; Chen, Xiaoliang ; Li, Xiangming ; Tian, Hongmiao ; Li, Sheng ; Wang, Liang ; He, Juan ; Yang, Zhengbing ; Shao, Jinyou</creatorcontrib><description>Developing highly sensitive strain sensors requires conduction pathways capable of rapidly switching between disconnection and reconnection in response to strain. Ion channels in living organisms exactly control the channel switch through protein‐composed gates, achieving changeable ion currents. Herein, inspired by the gating characteristics of the ion channels, a programmable fluidic strain sensor enhanced by gating ion pathways through heterogeneous strain distribution of discrete micropillars is proposed. During stretching, the contraction and closure of the widthwise gaps between discrete micropillars greatly weaken or even nearly cut off the conduction pathway, resulting in orders of magnitude increase in resistance and thus ultrahigh sensitivity. By adjusting the combination form and structural parameters of the discrete micropillars in the fluidic channel, the sensitivity and strain range can be customized. Thus, a gauge factor of up to 45 300 and a stretch range of 590% are obtained. Benefiting from the fluidic gating mechanism, no mechanical mismatch can be observed at the interface, breaking through the sensing stability issue of flexible sensors. The proposed sensor can be used to detect the full range of human motion, and integrated into a data glove to achieve human–machine interaction. Inspired by the ion channels in living organisms, discretely distributed laterally free micropillars are introduced into the fluidic channel to act as the gates and construct a gated strain sensor with the conductive liquid infiltrated within the gaps, obtaining a high gauge factor of up to 45 300, wide broad range of 590%, and great stability of 90 000 drift‐free cycling tests.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202207141</identifier><identifier>PMID: 36281804</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bioinspiration ; Biosensing Techniques ; Flexible components ; fluids ; gated microchannels ; high sensitivity ; Human motion ; Humans ; Interface stability ; Ion Channels ; Ion currents ; Materials science ; Microchannels ; Motion ; Parameter sensitivity ; Sensitivity ; Sensors ; Strain distribution ; strain sensing</subject><ispartof>Advanced materials (Weinheim), 2023-01, Vol.35 (2), p.e2207141-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-a44b25663b09be6a5011c156cd862b186d81afd4c7ce0a4d2f4c7163febcc2ca3</citedby><cites>FETCH-LOGICAL-c3731-a44b25663b09be6a5011c156cd862b186d81afd4c7ce0a4d2f4c7163febcc2ca3</cites><orcidid>0000-0003-2525-4587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202207141$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202207141$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36281804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Yongsong</creatorcontrib><creatorcontrib>Chen, Xiaoliang</creatorcontrib><creatorcontrib>Li, Xiangming</creatorcontrib><creatorcontrib>Tian, Hongmiao</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>He, Juan</creatorcontrib><creatorcontrib>Yang, Zhengbing</creatorcontrib><creatorcontrib>Shao, Jinyou</creatorcontrib><title>Heterogeneous Strain Distribution Based Programmable Gated Microchannel for Ultrasensitive and Stable Strain Sensing</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Developing highly sensitive strain sensors requires conduction pathways capable of rapidly switching between disconnection and reconnection in response to strain. Ion channels in living organisms exactly control the channel switch through protein‐composed gates, achieving changeable ion currents. Herein, inspired by the gating characteristics of the ion channels, a programmable fluidic strain sensor enhanced by gating ion pathways through heterogeneous strain distribution of discrete micropillars is proposed. During stretching, the contraction and closure of the widthwise gaps between discrete micropillars greatly weaken or even nearly cut off the conduction pathway, resulting in orders of magnitude increase in resistance and thus ultrahigh sensitivity. By adjusting the combination form and structural parameters of the discrete micropillars in the fluidic channel, the sensitivity and strain range can be customized. Thus, a gauge factor of up to 45 300 and a stretch range of 590% are obtained. Benefiting from the fluidic gating mechanism, no mechanical mismatch can be observed at the interface, breaking through the sensing stability issue of flexible sensors. The proposed sensor can be used to detect the full range of human motion, and integrated into a data glove to achieve human–machine interaction. Inspired by the ion channels in living organisms, discretely distributed laterally free micropillars are introduced into the fluidic channel to act as the gates and construct a gated strain sensor with the conductive liquid infiltrated within the gaps, obtaining a high gauge factor of up to 45 300, wide broad range of 590%, and great stability of 90 000 drift‐free cycling tests.</description><subject>bioinspiration</subject><subject>Biosensing Techniques</subject><subject>Flexible components</subject><subject>fluids</subject><subject>gated microchannels</subject><subject>high sensitivity</subject><subject>Human motion</subject><subject>Humans</subject><subject>Interface stability</subject><subject>Ion Channels</subject><subject>Ion currents</subject><subject>Materials science</subject><subject>Microchannels</subject><subject>Motion</subject><subject>Parameter sensitivity</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Strain distribution</subject><subject>strain sensing</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtLxDAURoMoOj62LqXgxk3HJE3TdDm-RkFRUNflNr0dI22qSavMvzfjjCO4cZWQnO9wLx8hh4yOGaX8FKoWxpxyTjMm2AYZsZSzWNA83SQjmidpnEuhdsiu96-U0lxSuU12EskVU1SMSH-NPbpuhha7wUePvQNjowvje2fKoTedjc7AYxU9BMhB20LZYDSFPjzdGe06_QLWYhPVnYuemxD3aL3pzQdGYKsg_A6svI-LPzvbJ1s1NB4PVuceeb66fDq_jm_vpzfnk9tYJ1nCYhCi5KmUSUnzEiWklDHNUqkrJXnJlKwUg7oSOtNIQVS8DlcmkxpLrbmGZI-cLL1vrnsf0PdFa7zGpoHvbQuecSVkptIkoMd_0NducDZMFygpMilzxQI1XlJhce8d1sWbMy24ecFoseijWPRRrPsIgaOVdihbrNb4TwEByJfAp2lw_o-umFzcTX7lXw1ymHY</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Luo, Yongsong</creator><creator>Chen, Xiaoliang</creator><creator>Li, Xiangming</creator><creator>Tian, Hongmiao</creator><creator>Li, Sheng</creator><creator>Wang, Liang</creator><creator>He, Juan</creator><creator>Yang, Zhengbing</creator><creator>Shao, Jinyou</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2525-4587</orcidid></search><sort><creationdate>202301</creationdate><title>Heterogeneous Strain Distribution Based Programmable Gated Microchannel for Ultrasensitive and Stable Strain Sensing</title><author>Luo, Yongsong ; Chen, Xiaoliang ; Li, Xiangming ; Tian, Hongmiao ; Li, Sheng ; Wang, Liang ; He, Juan ; Yang, Zhengbing ; Shao, Jinyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-a44b25663b09be6a5011c156cd862b186d81afd4c7ce0a4d2f4c7163febcc2ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bioinspiration</topic><topic>Biosensing Techniques</topic><topic>Flexible components</topic><topic>fluids</topic><topic>gated microchannels</topic><topic>high sensitivity</topic><topic>Human motion</topic><topic>Humans</topic><topic>Interface stability</topic><topic>Ion Channels</topic><topic>Ion currents</topic><topic>Materials science</topic><topic>Microchannels</topic><topic>Motion</topic><topic>Parameter sensitivity</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Strain distribution</topic><topic>strain sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Yongsong</creatorcontrib><creatorcontrib>Chen, Xiaoliang</creatorcontrib><creatorcontrib>Li, Xiangming</creatorcontrib><creatorcontrib>Tian, Hongmiao</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Wang, Liang</creatorcontrib><creatorcontrib>He, Juan</creatorcontrib><creatorcontrib>Yang, Zhengbing</creatorcontrib><creatorcontrib>Shao, Jinyou</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Yongsong</au><au>Chen, Xiaoliang</au><au>Li, Xiangming</au><au>Tian, Hongmiao</au><au>Li, Sheng</au><au>Wang, Liang</au><au>He, Juan</au><au>Yang, Zhengbing</au><au>Shao, Jinyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous Strain Distribution Based Programmable Gated Microchannel for Ultrasensitive and Stable Strain Sensing</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-01</date><risdate>2023</risdate><volume>35</volume><issue>2</issue><spage>e2207141</spage><epage>n/a</epage><pages>e2207141-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Developing highly sensitive strain sensors requires conduction pathways capable of rapidly switching between disconnection and reconnection in response to strain. Ion channels in living organisms exactly control the channel switch through protein‐composed gates, achieving changeable ion currents. Herein, inspired by the gating characteristics of the ion channels, a programmable fluidic strain sensor enhanced by gating ion pathways through heterogeneous strain distribution of discrete micropillars is proposed. During stretching, the contraction and closure of the widthwise gaps between discrete micropillars greatly weaken or even nearly cut off the conduction pathway, resulting in orders of magnitude increase in resistance and thus ultrahigh sensitivity. By adjusting the combination form and structural parameters of the discrete micropillars in the fluidic channel, the sensitivity and strain range can be customized. Thus, a gauge factor of up to 45 300 and a stretch range of 590% are obtained. Benefiting from the fluidic gating mechanism, no mechanical mismatch can be observed at the interface, breaking through the sensing stability issue of flexible sensors. The proposed sensor can be used to detect the full range of human motion, and integrated into a data glove to achieve human–machine interaction. Inspired by the ion channels in living organisms, discretely distributed laterally free micropillars are introduced into the fluidic channel to act as the gates and construct a gated strain sensor with the conductive liquid infiltrated within the gaps, obtaining a high gauge factor of up to 45 300, wide broad range of 590%, and great stability of 90 000 drift‐free cycling tests.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36281804</pmid><doi>10.1002/adma.202207141</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2525-4587</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-01, Vol.35 (2), p.e2207141-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2728467853
source MEDLINE; Access via Wiley Online Library
subjects bioinspiration
Biosensing Techniques
Flexible components
fluids
gated microchannels
high sensitivity
Human motion
Humans
Interface stability
Ion Channels
Ion currents
Materials science
Microchannels
Motion
Parameter sensitivity
Sensitivity
Sensors
Strain distribution
strain sensing
title Heterogeneous Strain Distribution Based Programmable Gated Microchannel for Ultrasensitive and Stable Strain Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20Strain%20Distribution%20Based%20Programmable%20Gated%20Microchannel%20for%20Ultrasensitive%20and%20Stable%20Strain%20Sensing&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Luo,%20Yongsong&rft.date=2023-01&rft.volume=35&rft.issue=2&rft.spage=e2207141&rft.epage=n/a&rft.pages=e2207141-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202207141&rft_dat=%3Cproquest_cross%3E2764766981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2764766981&rft_id=info:pmid/36281804&rfr_iscdi=true