Probabilistic Model for Tunneling Project Using Markov Chain

Actual tunnel advance rates from the Outfall Tunnel of the Boston Harbor Cleanup Project are analyzed. It is shown that states of work and nonwork for the tunnel boring machine can be modeled with a Markov chain. A general probabilistic approach is proposed for developing the cumulative distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of construction engineering and management 1997-12, Vol.123 (4), p.444-449
1. Verfasser: Touran, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 449
container_issue 4
container_start_page 444
container_title Journal of construction engineering and management
container_volume 123
creator Touran, Ali
description Actual tunnel advance rates from the Outfall Tunnel of the Boston Harbor Cleanup Project are analyzed. It is shown that states of work and nonwork for the tunnel boring machine can be modeled with a Markov chain. A general probabilistic approach is proposed for developing the cumulative distribution function (CDF) of the total length that can be tunneled in a given time frame. Simulation models are developed to verify the results of the analytical model and also to simulate the distribution for the time necessary to tunnel a certain length (in this case the remainder of the tunnel). The validity of the predictive model is verified using the data from the completed project. The proposed approach may be used for relatively long tunnels with durations extending over several months where the tunneling has already begun and sufficient progress data have been collected. The data from progress up to a certain date may be used for forecasting the length of tunnel that can be constructed in a specified duration.
doi_str_mv 10.1061/(ASCE)0733-9364(1997)123:4(444)
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27282770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27282770</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-76f36ef8efca7bc6da97495e488e8b67ede938cfd1bc34edae839ea4b23146da3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKf_oRei20U1X2sSEWHU-cWGght4F9L0VDu7diab4L83dbpLc5MTeHjzngehU4LPCE7IeW_4nI76WDAWK5bwHlFK9AllF7zHOe_voA5RnMVCJnQXdbbcPjrwfo4x4YkadNDlk2syk5VV6VeljSZNDlVUNC6arusaqrJ-jQIxB7uKZr59TYx7bz6j9M2U9SHaK0zl4ej37qLZzWia3sXjx9v7dDiODcdqFYukYAkUEgprRGaT3CjB1QC4lCCzREAOiklb5CSzjENuQDIFhmeUhZa5YV10sslduuZjDX6lF6W3UFWmhmbtNRVUUiFwAK82oHWN9w4KvXTlwrgvTbBurWndWtOtDd3a0K01HaxproO1EHD8-5Px1lSFM7Ut_TaFYkklIwF72WCBAj1v1q4O--uHdDS55jjIpQy3p51D7M9M_ir83-AbmM-GCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27282770</pqid></control><display><type>article</type><title>Probabilistic Model for Tunneling Project Using Markov Chain</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><source>Business Source Complete</source><creator>Touran, Ali</creator><creatorcontrib>Touran, Ali</creatorcontrib><description>Actual tunnel advance rates from the Outfall Tunnel of the Boston Harbor Cleanup Project are analyzed. It is shown that states of work and nonwork for the tunnel boring machine can be modeled with a Markov chain. A general probabilistic approach is proposed for developing the cumulative distribution function (CDF) of the total length that can be tunneled in a given time frame. Simulation models are developed to verify the results of the analytical model and also to simulate the distribution for the time necessary to tunnel a certain length (in this case the remainder of the tunnel). The validity of the predictive model is verified using the data from the completed project. The proposed approach may be used for relatively long tunnels with durations extending over several months where the tunneling has already begun and sufficient progress data have been collected. The data from progress up to a certain date may be used for forecasting the length of tunnel that can be constructed in a specified duration.</description><identifier>ISSN: 0733-9364</identifier><identifier>EISSN: 1943-7862</identifier><identifier>DOI: 10.1061/(ASCE)0733-9364(1997)123:4(444)</identifier><identifier>CODEN: JCEMD4</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Applied sciences ; Buildings. Public works ; Exact sciences and technology ; TECHNICAL PAPERS ; Tunnels, galleries</subject><ispartof>Journal of construction engineering and management, 1997-12, Vol.123 (4), p.444-449</ispartof><rights>Copyright © 1997 American Society of Civil Engineers</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-76f36ef8efca7bc6da97495e488e8b67ede938cfd1bc34edae839ea4b23146da3</citedby><cites>FETCH-LOGICAL-a409t-76f36ef8efca7bc6da97495e488e8b67ede938cfd1bc34edae839ea4b23146da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0733-9364(1997)123:4(444)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9364(1997)123:4(444)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75935,75943</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2082831$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Touran, Ali</creatorcontrib><title>Probabilistic Model for Tunneling Project Using Markov Chain</title><title>Journal of construction engineering and management</title><description>Actual tunnel advance rates from the Outfall Tunnel of the Boston Harbor Cleanup Project are analyzed. It is shown that states of work and nonwork for the tunnel boring machine can be modeled with a Markov chain. A general probabilistic approach is proposed for developing the cumulative distribution function (CDF) of the total length that can be tunneled in a given time frame. Simulation models are developed to verify the results of the analytical model and also to simulate the distribution for the time necessary to tunnel a certain length (in this case the remainder of the tunnel). The validity of the predictive model is verified using the data from the completed project. The proposed approach may be used for relatively long tunnels with durations extending over several months where the tunneling has already begun and sufficient progress data have been collected. The data from progress up to a certain date may be used for forecasting the length of tunnel that can be constructed in a specified duration.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Exact sciences and technology</subject><subject>TECHNICAL PAPERS</subject><subject>Tunnels, galleries</subject><issn>0733-9364</issn><issn>1943-7862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKf_oRei20U1X2sSEWHU-cWGght4F9L0VDu7diab4L83dbpLc5MTeHjzngehU4LPCE7IeW_4nI76WDAWK5bwHlFK9AllF7zHOe_voA5RnMVCJnQXdbbcPjrwfo4x4YkadNDlk2syk5VV6VeljSZNDlVUNC6arusaqrJ-jQIxB7uKZr59TYx7bz6j9M2U9SHaK0zl4ej37qLZzWia3sXjx9v7dDiODcdqFYukYAkUEgprRGaT3CjB1QC4lCCzREAOiklb5CSzjENuQDIFhmeUhZa5YV10sslduuZjDX6lF6W3UFWmhmbtNRVUUiFwAK82oHWN9w4KvXTlwrgvTbBurWndWtOtDd3a0K01HaxproO1EHD8-5Px1lSFM7Ut_TaFYkklIwF72WCBAj1v1q4O--uHdDS55jjIpQy3p51D7M9M_ir83-AbmM-GCw</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Touran, Ali</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>19971201</creationdate><title>Probabilistic Model for Tunneling Project Using Markov Chain</title><author>Touran, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-76f36ef8efca7bc6da97495e488e8b67ede938cfd1bc34edae839ea4b23146da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Exact sciences and technology</topic><topic>TECHNICAL PAPERS</topic><topic>Tunnels, galleries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Touran, Ali</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of construction engineering and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Touran, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Model for Tunneling Project Using Markov Chain</atitle><jtitle>Journal of construction engineering and management</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>123</volume><issue>4</issue><spage>444</spage><epage>449</epage><pages>444-449</pages><issn>0733-9364</issn><eissn>1943-7862</eissn><coden>JCEMD4</coden><abstract>Actual tunnel advance rates from the Outfall Tunnel of the Boston Harbor Cleanup Project are analyzed. It is shown that states of work and nonwork for the tunnel boring machine can be modeled with a Markov chain. A general probabilistic approach is proposed for developing the cumulative distribution function (CDF) of the total length that can be tunneled in a given time frame. Simulation models are developed to verify the results of the analytical model and also to simulate the distribution for the time necessary to tunnel a certain length (in this case the remainder of the tunnel). The validity of the predictive model is verified using the data from the completed project. The proposed approach may be used for relatively long tunnels with durations extending over several months where the tunneling has already begun and sufficient progress data have been collected. The data from progress up to a certain date may be used for forecasting the length of tunnel that can be constructed in a specified duration.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0733-9364(1997)123:4(444)</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0733-9364
ispartof Journal of construction engineering and management, 1997-12, Vol.123 (4), p.444-449
issn 0733-9364
1943-7862
language eng
recordid cdi_proquest_miscellaneous_27282770
source American Society of Civil Engineers:NESLI2:Journals:2014; Business Source Complete
subjects Applied sciences
Buildings. Public works
Exact sciences and technology
TECHNICAL PAPERS
Tunnels, galleries
title Probabilistic Model for Tunneling Project Using Markov Chain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Model%20for%20Tunneling%20Project%20Using%20Markov%20Chain&rft.jtitle=Journal%20of%20construction%20engineering%20and%20management&rft.au=Touran,%20Ali&rft.date=1997-12-01&rft.volume=123&rft.issue=4&rft.spage=444&rft.epage=449&rft.pages=444-449&rft.issn=0733-9364&rft.eissn=1943-7862&rft.coden=JCEMD4&rft_id=info:doi/10.1061/(ASCE)0733-9364(1997)123:4(444)&rft_dat=%3Cproquest_cross%3E27282770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27282770&rft_id=info:pmid/&rfr_iscdi=true