Electroconductive scaffolds based on gelatin and PEDOT:PSS for cardiac regeneration
Electroconductive biomaterials have been emerged to support the recovery of the degenerated electrically conductive tissues, especially the cardiac ones after myocardial infarction. This work describes the development of electroconductive scaffolds for cardiac tissue regeneration by using a biocompa...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2023-01, Vol.224, p.266-280 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 280 |
---|---|
container_issue | |
container_start_page | 266 |
container_title | International journal of biological macromolecules |
container_volume | 224 |
creator | Furlani, Franco Campodoni, Elisabetta Sangiorgi, Nicola Montesi, Monica Sanson, Alessandra Sandri, Monica Panseri, Silvia |
description | Electroconductive biomaterials have been emerged to support the recovery of the degenerated electrically conductive tissues, especially the cardiac ones after myocardial infarction. This work describes the development of electroconductive scaffolds for cardiac tissue regeneration by using a biocompatible and conductive polymer – i.e. poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) – combined with a biomimetic polymer network of gelatin. Our approach involves the use of dehydrothermal (DHT) treatment in vacuum conditions to fabricate suitably stable scaffolds without using any additional crosslinking agent. The resulting scaffolds mimic the Young modulus – an essential mechanical performance – of native cardiac tissue and are endowed with a well-interconnected porosity coupled with a good swelling ability and stability in physiological conditions. Additionally, the presence of PEDOT:PSS is able to enhance the electroconductivity of resulting materials. All the scaffolds are non-cytotoxic towards H9C2 cardiomyoblasts and the presence of PEDOT:PSS enhances cell adhesion – especially at early timeframes, an essential condition for a successful outcome after the implantation – proliferation, and spreading on scaffolds. Considering the permissive interaction of scaffolds with cardiomyoblasts, the present biomimetic and electroconductive scaffolds display potential applications as implantable biomaterials for regeneration of electroconductive tissues, especially cardiac tissue, and as a promising 3D tissue model for in vitro biomolecules screening.
•Electroconductive scaffolds can be fabricated by using gelatin and PEDOT:PSS.•Scaffolds can be stabilized by the dehydrothermal (DHT) treatment.•Scaffolds mimic the mechanics of native cardiac tissue and are electroconductive.•Scaffolds enhance cardiomyoblasts' adhesion, proliferation, and spreading. |
doi_str_mv | 10.1016/j.ijbiomac.2022.10.122 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2727643174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813022023649</els_id><sourcerecordid>2727643174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9a7cce434db9725129c2888562ef32eb2521be0bdb3e20b5826d7b04d5e110da3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWqt_QXL0sjWZ7Ga3npRaP6DQQvUc8jErKduNJtuC_96ttV49Dbw87wzzEHLF2YgzLm9WI78yPqy1HQEDGO1ygCMy4FU5zhhj4pgMGM95VnHBzsh5Sqs-lQWvTsmZkCCLIucDspw2aLsYbGjdxnZ-izRZXdehcYkandDR0NJ3bHTnW6pbRxfTh_nr7WK5pHWI1OrovLY04ju2GHsqtBfkpNZNwsvfOSRvj9PXyXM2mz-9TO5nmRWy6rKxLq3FXOTOjEsoOIwtVFVVSMBaABoogBtkxhmBwExRgXSlYbkrkHPmtBiS6_3ejxg-N5g6tfbJYtPoFsMmKSihlLngZd6jco_aGFKKWKuP6Nc6finO1E6oWqmDULUT-pMD9MWr3xsbs0b3VzsY7IG7PYD9p1uPUSXrsbXofOzNKhf8fze-Ab-fic0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2727643174</pqid></control><display><type>article</type><title>Electroconductive scaffolds based on gelatin and PEDOT:PSS for cardiac regeneration</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Furlani, Franco ; Campodoni, Elisabetta ; Sangiorgi, Nicola ; Montesi, Monica ; Sanson, Alessandra ; Sandri, Monica ; Panseri, Silvia</creator><creatorcontrib>Furlani, Franco ; Campodoni, Elisabetta ; Sangiorgi, Nicola ; Montesi, Monica ; Sanson, Alessandra ; Sandri, Monica ; Panseri, Silvia</creatorcontrib><description>Electroconductive biomaterials have been emerged to support the recovery of the degenerated electrically conductive tissues, especially the cardiac ones after myocardial infarction. This work describes the development of electroconductive scaffolds for cardiac tissue regeneration by using a biocompatible and conductive polymer – i.e. poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) – combined with a biomimetic polymer network of gelatin. Our approach involves the use of dehydrothermal (DHT) treatment in vacuum conditions to fabricate suitably stable scaffolds without using any additional crosslinking agent. The resulting scaffolds mimic the Young modulus – an essential mechanical performance – of native cardiac tissue and are endowed with a well-interconnected porosity coupled with a good swelling ability and stability in physiological conditions. Additionally, the presence of PEDOT:PSS is able to enhance the electroconductivity of resulting materials. All the scaffolds are non-cytotoxic towards H9C2 cardiomyoblasts and the presence of PEDOT:PSS enhances cell adhesion – especially at early timeframes, an essential condition for a successful outcome after the implantation – proliferation, and spreading on scaffolds. Considering the permissive interaction of scaffolds with cardiomyoblasts, the present biomimetic and electroconductive scaffolds display potential applications as implantable biomaterials for regeneration of electroconductive tissues, especially cardiac tissue, and as a promising 3D tissue model for in vitro biomolecules screening.
•Electroconductive scaffolds can be fabricated by using gelatin and PEDOT:PSS.•Scaffolds can be stabilized by the dehydrothermal (DHT) treatment.•Scaffolds mimic the mechanics of native cardiac tissue and are electroconductive.•Scaffolds enhance cardiomyoblasts' adhesion, proliferation, and spreading.</description><identifier>ISSN: 0141-8130</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2022.10.122</identifier><identifier>PMID: 36265541</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biocompatible Materials ; Cardiomyoblasts ; Dehydrothermal treatment ; Electroconductive biomaterials ; Gelatin ; In vitro evaluation ; Polymers ; Regenerative medicine ; Scaffolds ; Tissue Scaffolds</subject><ispartof>International journal of biological macromolecules, 2023-01, Vol.224, p.266-280</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright © 2022 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-9a7cce434db9725129c2888562ef32eb2521be0bdb3e20b5826d7b04d5e110da3</citedby><cites>FETCH-LOGICAL-c368t-9a7cce434db9725129c2888562ef32eb2521be0bdb3e20b5826d7b04d5e110da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141813022023649$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36265541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Furlani, Franco</creatorcontrib><creatorcontrib>Campodoni, Elisabetta</creatorcontrib><creatorcontrib>Sangiorgi, Nicola</creatorcontrib><creatorcontrib>Montesi, Monica</creatorcontrib><creatorcontrib>Sanson, Alessandra</creatorcontrib><creatorcontrib>Sandri, Monica</creatorcontrib><creatorcontrib>Panseri, Silvia</creatorcontrib><title>Electroconductive scaffolds based on gelatin and PEDOT:PSS for cardiac regeneration</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>Electroconductive biomaterials have been emerged to support the recovery of the degenerated electrically conductive tissues, especially the cardiac ones after myocardial infarction. This work describes the development of electroconductive scaffolds for cardiac tissue regeneration by using a biocompatible and conductive polymer – i.e. poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) – combined with a biomimetic polymer network of gelatin. Our approach involves the use of dehydrothermal (DHT) treatment in vacuum conditions to fabricate suitably stable scaffolds without using any additional crosslinking agent. The resulting scaffolds mimic the Young modulus – an essential mechanical performance – of native cardiac tissue and are endowed with a well-interconnected porosity coupled with a good swelling ability and stability in physiological conditions. Additionally, the presence of PEDOT:PSS is able to enhance the electroconductivity of resulting materials. All the scaffolds are non-cytotoxic towards H9C2 cardiomyoblasts and the presence of PEDOT:PSS enhances cell adhesion – especially at early timeframes, an essential condition for a successful outcome after the implantation – proliferation, and spreading on scaffolds. Considering the permissive interaction of scaffolds with cardiomyoblasts, the present biomimetic and electroconductive scaffolds display potential applications as implantable biomaterials for regeneration of electroconductive tissues, especially cardiac tissue, and as a promising 3D tissue model for in vitro biomolecules screening.
•Electroconductive scaffolds can be fabricated by using gelatin and PEDOT:PSS.•Scaffolds can be stabilized by the dehydrothermal (DHT) treatment.•Scaffolds mimic the mechanics of native cardiac tissue and are electroconductive.•Scaffolds enhance cardiomyoblasts' adhesion, proliferation, and spreading.</description><subject>Biocompatible Materials</subject><subject>Cardiomyoblasts</subject><subject>Dehydrothermal treatment</subject><subject>Electroconductive biomaterials</subject><subject>Gelatin</subject><subject>In vitro evaluation</subject><subject>Polymers</subject><subject>Regenerative medicine</subject><subject>Scaffolds</subject><subject>Tissue Scaffolds</subject><issn>0141-8130</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMoWqt_QXL0sjWZ7Ga3npRaP6DQQvUc8jErKduNJtuC_96ttV49Dbw87wzzEHLF2YgzLm9WI78yPqy1HQEDGO1ygCMy4FU5zhhj4pgMGM95VnHBzsh5Sqs-lQWvTsmZkCCLIucDspw2aLsYbGjdxnZ-izRZXdehcYkandDR0NJ3bHTnW6pbRxfTh_nr7WK5pHWI1OrovLY04ju2GHsqtBfkpNZNwsvfOSRvj9PXyXM2mz-9TO5nmRWy6rKxLq3FXOTOjEsoOIwtVFVVSMBaABoogBtkxhmBwExRgXSlYbkrkHPmtBiS6_3ejxg-N5g6tfbJYtPoFsMmKSihlLngZd6jco_aGFKKWKuP6Nc6finO1E6oWqmDULUT-pMD9MWr3xsbs0b3VzsY7IG7PYD9p1uPUSXrsbXofOzNKhf8fze-Ab-fic0</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Furlani, Franco</creator><creator>Campodoni, Elisabetta</creator><creator>Sangiorgi, Nicola</creator><creator>Montesi, Monica</creator><creator>Sanson, Alessandra</creator><creator>Sandri, Monica</creator><creator>Panseri, Silvia</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230101</creationdate><title>Electroconductive scaffolds based on gelatin and PEDOT:PSS for cardiac regeneration</title><author>Furlani, Franco ; Campodoni, Elisabetta ; Sangiorgi, Nicola ; Montesi, Monica ; Sanson, Alessandra ; Sandri, Monica ; Panseri, Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9a7cce434db9725129c2888562ef32eb2521be0bdb3e20b5826d7b04d5e110da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biocompatible Materials</topic><topic>Cardiomyoblasts</topic><topic>Dehydrothermal treatment</topic><topic>Electroconductive biomaterials</topic><topic>Gelatin</topic><topic>In vitro evaluation</topic><topic>Polymers</topic><topic>Regenerative medicine</topic><topic>Scaffolds</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furlani, Franco</creatorcontrib><creatorcontrib>Campodoni, Elisabetta</creatorcontrib><creatorcontrib>Sangiorgi, Nicola</creatorcontrib><creatorcontrib>Montesi, Monica</creatorcontrib><creatorcontrib>Sanson, Alessandra</creatorcontrib><creatorcontrib>Sandri, Monica</creatorcontrib><creatorcontrib>Panseri, Silvia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furlani, Franco</au><au>Campodoni, Elisabetta</au><au>Sangiorgi, Nicola</au><au>Montesi, Monica</au><au>Sanson, Alessandra</au><au>Sandri, Monica</au><au>Panseri, Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroconductive scaffolds based on gelatin and PEDOT:PSS for cardiac regeneration</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>224</volume><spage>266</spage><epage>280</epage><pages>266-280</pages><issn>0141-8130</issn><eissn>1879-0003</eissn><abstract>Electroconductive biomaterials have been emerged to support the recovery of the degenerated electrically conductive tissues, especially the cardiac ones after myocardial infarction. This work describes the development of electroconductive scaffolds for cardiac tissue regeneration by using a biocompatible and conductive polymer – i.e. poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) – combined with a biomimetic polymer network of gelatin. Our approach involves the use of dehydrothermal (DHT) treatment in vacuum conditions to fabricate suitably stable scaffolds without using any additional crosslinking agent. The resulting scaffolds mimic the Young modulus – an essential mechanical performance – of native cardiac tissue and are endowed with a well-interconnected porosity coupled with a good swelling ability and stability in physiological conditions. Additionally, the presence of PEDOT:PSS is able to enhance the electroconductivity of resulting materials. All the scaffolds are non-cytotoxic towards H9C2 cardiomyoblasts and the presence of PEDOT:PSS enhances cell adhesion – especially at early timeframes, an essential condition for a successful outcome after the implantation – proliferation, and spreading on scaffolds. Considering the permissive interaction of scaffolds with cardiomyoblasts, the present biomimetic and electroconductive scaffolds display potential applications as implantable biomaterials for regeneration of electroconductive tissues, especially cardiac tissue, and as a promising 3D tissue model for in vitro biomolecules screening.
•Electroconductive scaffolds can be fabricated by using gelatin and PEDOT:PSS.•Scaffolds can be stabilized by the dehydrothermal (DHT) treatment.•Scaffolds mimic the mechanics of native cardiac tissue and are electroconductive.•Scaffolds enhance cardiomyoblasts' adhesion, proliferation, and spreading.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36265541</pmid><doi>10.1016/j.ijbiomac.2022.10.122</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2023-01, Vol.224, p.266-280 |
issn | 0141-8130 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_2727643174 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Biocompatible Materials Cardiomyoblasts Dehydrothermal treatment Electroconductive biomaterials Gelatin In vitro evaluation Polymers Regenerative medicine Scaffolds Tissue Scaffolds |
title | Electroconductive scaffolds based on gelatin and PEDOT:PSS for cardiac regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroconductive%20scaffolds%20based%20on%20gelatin%20and%20PEDOT:PSS%20for%20cardiac%20regeneration&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Furlani,%20Franco&rft.date=2023-01-01&rft.volume=224&rft.spage=266&rft.epage=280&rft.pages=266-280&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2022.10.122&rft_dat=%3Cproquest_cross%3E2727643174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2727643174&rft_id=info:pmid/36265541&rft_els_id=S0141813022023649&rfr_iscdi=true |