PID control of a chaotic system: An application to an epidemiological model

This paper is devoted to the control of a nonlinear sampled system that can exhibit chaotic behaviour. The system is derived from a classical epidemiological model in which the vaccination rate is the control variable. It is shown that chaos can be removed by using a constant and suitably large vacc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 1997-02, Vol.33 (2), p.181-191
Hauptverfasser: Ghezzi, Luca L., Piccardi, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue 2
container_start_page 181
container_title Automatica (Oxford)
container_volume 33
creator Ghezzi, Luca L.
Piccardi, Carlo
description This paper is devoted to the control of a nonlinear sampled system that can exhibit chaotic behaviour. The system is derived from a classical epidemiological model in which the vaccination rate is the control variable. It is shown that chaos can be removed by using a constant and suitably large vaccination rate. Nonetheless, reducing rather than suppressing chaos seems to be a more appropriate goal owing to both general and case-specific reasons. PID control laws, for the first time applied to this purpose, prove effective as well as robust, since they make the control system fairly insensitive to parameter misspecification. Bifurcation analysis and simulation play a chief role in the work.
doi_str_mv 10.1016/S0005-1098(96)00163-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27270473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000510989600163X</els_id><sourcerecordid>27270473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-8cbde401b7c53bbbad2c10626b29b03872eb30d7f82bbb390e4c8afb45dd9f503</originalsourceid><addsrcrecordid>eNqFkElLBDEQhYMoOC4_QchBRA-tWXpJe5FhXHFAQYW5hSzVGunutEkrzL8344hXT0VVfa8e9RA6oOSUElqePRFCioySWhzX5QlJI54tNtCEiopnTPByE03-kG20E-N7anMq2ATdP95dYuP7MfgW-wYrbN6UH53BcRlH6M7xtMdqGFpn1Oh8j0ePVY9hcBY651v_mhYt7ryFdg9tNaqNsP9bd9HL9dXz7DabP9zczabzzOQlGzNhtIWcUF2ZgmutlWWGkpKVmtWacFEx0JzYqhEsbXlNIDdCNTovrK2bgvBddLS-OwT_8QlxlJ2LBtpW9eA_o2QVq0he8QQWa9AEH2OARg7BdSosJSVyFZ38iU6ucpF1KX-ik4ukO_w1UDF91wTVGxf_xKyoRc2KhF2sMUjPfjkIMhoHvQHrAphRWu_-MfoGnYOC6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27270473</pqid></control><display><type>article</type><title>PID control of a chaotic system: An application to an epidemiological model</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ghezzi, Luca L. ; Piccardi, Carlo</creator><creatorcontrib>Ghezzi, Luca L. ; Piccardi, Carlo</creatorcontrib><description>This paper is devoted to the control of a nonlinear sampled system that can exhibit chaotic behaviour. The system is derived from a classical epidemiological model in which the vaccination rate is the control variable. It is shown that chaos can be removed by using a constant and suitably large vaccination rate. Nonetheless, reducing rather than suppressing chaos seems to be a more appropriate goal owing to both general and case-specific reasons. PID control laws, for the first time applied to this purpose, prove effective as well as robust, since they make the control system fairly insensitive to parameter misspecification. Bifurcation analysis and simulation play a chief role in the work.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/S0005-1098(96)00163-X</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; bifurcation analysis ; chaotic behaviour ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Nonlinear systems ; PID control ; Process control. Computer integrated manufacturing</subject><ispartof>Automatica (Oxford), 1997-02, Vol.33 (2), p.181-191</ispartof><rights>1997 Elsevier Science Ltd</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-8cbde401b7c53bbbad2c10626b29b03872eb30d7f82bbb390e4c8afb45dd9f503</citedby><cites>FETCH-LOGICAL-c462t-8cbde401b7c53bbbad2c10626b29b03872eb30d7f82bbb390e4c8afb45dd9f503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0005-1098(96)00163-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2598925$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghezzi, Luca L.</creatorcontrib><creatorcontrib>Piccardi, Carlo</creatorcontrib><title>PID control of a chaotic system: An application to an epidemiological model</title><title>Automatica (Oxford)</title><description>This paper is devoted to the control of a nonlinear sampled system that can exhibit chaotic behaviour. The system is derived from a classical epidemiological model in which the vaccination rate is the control variable. It is shown that chaos can be removed by using a constant and suitably large vaccination rate. Nonetheless, reducing rather than suppressing chaos seems to be a more appropriate goal owing to both general and case-specific reasons. PID control laws, for the first time applied to this purpose, prove effective as well as robust, since they make the control system fairly insensitive to parameter misspecification. Bifurcation analysis and simulation play a chief role in the work.</description><subject>Applied sciences</subject><subject>bifurcation analysis</subject><subject>chaotic behaviour</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Nonlinear systems</subject><subject>PID control</subject><subject>Process control. Computer integrated manufacturing</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkElLBDEQhYMoOC4_QchBRA-tWXpJe5FhXHFAQYW5hSzVGunutEkrzL8344hXT0VVfa8e9RA6oOSUElqePRFCioySWhzX5QlJI54tNtCEiopnTPByE03-kG20E-N7anMq2ATdP95dYuP7MfgW-wYrbN6UH53BcRlH6M7xtMdqGFpn1Oh8j0ePVY9hcBY651v_mhYt7ryFdg9tNaqNsP9bd9HL9dXz7DabP9zczabzzOQlGzNhtIWcUF2ZgmutlWWGkpKVmtWacFEx0JzYqhEsbXlNIDdCNTovrK2bgvBddLS-OwT_8QlxlJ2LBtpW9eA_o2QVq0he8QQWa9AEH2OARg7BdSosJSVyFZ38iU6ucpF1KX-ik4ukO_w1UDF91wTVGxf_xKyoRc2KhF2sMUjPfjkIMhoHvQHrAphRWu_-MfoGnYOC6w</recordid><startdate>19970201</startdate><enddate>19970201</enddate><creator>Ghezzi, Luca L.</creator><creator>Piccardi, Carlo</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19970201</creationdate><title>PID control of a chaotic system: An application to an epidemiological model</title><author>Ghezzi, Luca L. ; Piccardi, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-8cbde401b7c53bbbad2c10626b29b03872eb30d7f82bbb390e4c8afb45dd9f503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>bifurcation analysis</topic><topic>chaotic behaviour</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Nonlinear systems</topic><topic>PID control</topic><topic>Process control. Computer integrated manufacturing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghezzi, Luca L.</creatorcontrib><creatorcontrib>Piccardi, Carlo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghezzi, Luca L.</au><au>Piccardi, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PID control of a chaotic system: An application to an epidemiological model</atitle><jtitle>Automatica (Oxford)</jtitle><date>1997-02-01</date><risdate>1997</risdate><volume>33</volume><issue>2</issue><spage>181</spage><epage>191</epage><pages>181-191</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>This paper is devoted to the control of a nonlinear sampled system that can exhibit chaotic behaviour. The system is derived from a classical epidemiological model in which the vaccination rate is the control variable. It is shown that chaos can be removed by using a constant and suitably large vaccination rate. Nonetheless, reducing rather than suppressing chaos seems to be a more appropriate goal owing to both general and case-specific reasons. PID control laws, for the first time applied to this purpose, prove effective as well as robust, since they make the control system fairly insensitive to parameter misspecification. Bifurcation analysis and simulation play a chief role in the work.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0005-1098(96)00163-X</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 1997-02, Vol.33 (2), p.181-191
issn 0005-1098
1873-2836
language eng
recordid cdi_proquest_miscellaneous_27270473
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
bifurcation analysis
chaotic behaviour
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Nonlinear systems
PID control
Process control. Computer integrated manufacturing
title PID control of a chaotic system: An application to an epidemiological model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PID%20control%20of%20a%20chaotic%20system:%20An%20application%20to%20an%20epidemiological%20model&rft.jtitle=Automatica%20(Oxford)&rft.au=Ghezzi,%20Luca%20L.&rft.date=1997-02-01&rft.volume=33&rft.issue=2&rft.spage=181&rft.epage=191&rft.pages=181-191&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/S0005-1098(96)00163-X&rft_dat=%3Cproquest_cross%3E27270473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27270473&rft_id=info:pmid/&rft_els_id=S000510989600163X&rfr_iscdi=true