PID control of a chaotic system: An application to an epidemiological model
This paper is devoted to the control of a nonlinear sampled system that can exhibit chaotic behaviour. The system is derived from a classical epidemiological model in which the vaccination rate is the control variable. It is shown that chaos can be removed by using a constant and suitably large vacc...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 1997-02, Vol.33 (2), p.181-191 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | 2 |
container_start_page | 181 |
container_title | Automatica (Oxford) |
container_volume | 33 |
creator | Ghezzi, Luca L. Piccardi, Carlo |
description | This paper is devoted to the control of a nonlinear sampled system that can exhibit chaotic behaviour. The system is derived from a classical epidemiological model in which the vaccination rate is the control variable. It is shown that chaos can be removed by using a constant and suitably large vaccination rate. Nonetheless, reducing rather than suppressing chaos seems to be a more appropriate goal owing to both general and case-specific reasons. PID control laws, for the first time applied to this purpose, prove effective as well as robust, since they make the control system fairly insensitive to parameter misspecification. Bifurcation analysis and simulation play a chief role in the work. |
doi_str_mv | 10.1016/S0005-1098(96)00163-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27270473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000510989600163X</els_id><sourcerecordid>27270473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-8cbde401b7c53bbbad2c10626b29b03872eb30d7f82bbb390e4c8afb45dd9f503</originalsourceid><addsrcrecordid>eNqFkElLBDEQhYMoOC4_QchBRA-tWXpJe5FhXHFAQYW5hSzVGunutEkrzL8344hXT0VVfa8e9RA6oOSUElqePRFCioySWhzX5QlJI54tNtCEiopnTPByE03-kG20E-N7anMq2ATdP95dYuP7MfgW-wYrbN6UH53BcRlH6M7xtMdqGFpn1Oh8j0ePVY9hcBY651v_mhYt7ryFdg9tNaqNsP9bd9HL9dXz7DabP9zczabzzOQlGzNhtIWcUF2ZgmutlWWGkpKVmtWacFEx0JzYqhEsbXlNIDdCNTovrK2bgvBddLS-OwT_8QlxlJ2LBtpW9eA_o2QVq0he8QQWa9AEH2OARg7BdSosJSVyFZ38iU6ucpF1KX-ik4ukO_w1UDF91wTVGxf_xKyoRc2KhF2sMUjPfjkIMhoHvQHrAphRWu_-MfoGnYOC6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27270473</pqid></control><display><type>article</type><title>PID control of a chaotic system: An application to an epidemiological model</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ghezzi, Luca L. ; Piccardi, Carlo</creator><creatorcontrib>Ghezzi, Luca L. ; Piccardi, Carlo</creatorcontrib><description>This paper is devoted to the control of a nonlinear sampled system that can exhibit chaotic behaviour. The system is derived from a classical epidemiological model in which the vaccination rate is the control variable. It is shown that chaos can be removed by using a constant and suitably large vaccination rate. Nonetheless, reducing rather than suppressing chaos seems to be a more appropriate goal owing to both general and case-specific reasons. PID control laws, for the first time applied to this purpose, prove effective as well as robust, since they make the control system fairly insensitive to parameter misspecification. Bifurcation analysis and simulation play a chief role in the work.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/S0005-1098(96)00163-X</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; bifurcation analysis ; chaotic behaviour ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Nonlinear systems ; PID control ; Process control. Computer integrated manufacturing</subject><ispartof>Automatica (Oxford), 1997-02, Vol.33 (2), p.181-191</ispartof><rights>1997 Elsevier Science Ltd</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-8cbde401b7c53bbbad2c10626b29b03872eb30d7f82bbb390e4c8afb45dd9f503</citedby><cites>FETCH-LOGICAL-c462t-8cbde401b7c53bbbad2c10626b29b03872eb30d7f82bbb390e4c8afb45dd9f503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0005-1098(96)00163-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2598925$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghezzi, Luca L.</creatorcontrib><creatorcontrib>Piccardi, Carlo</creatorcontrib><title>PID control of a chaotic system: An application to an epidemiological model</title><title>Automatica (Oxford)</title><description>This paper is devoted to the control of a nonlinear sampled system that can exhibit chaotic behaviour. The system is derived from a classical epidemiological model in which the vaccination rate is the control variable. It is shown that chaos can be removed by using a constant and suitably large vaccination rate. Nonetheless, reducing rather than suppressing chaos seems to be a more appropriate goal owing to both general and case-specific reasons. PID control laws, for the first time applied to this purpose, prove effective as well as robust, since they make the control system fairly insensitive to parameter misspecification. Bifurcation analysis and simulation play a chief role in the work.</description><subject>Applied sciences</subject><subject>bifurcation analysis</subject><subject>chaotic behaviour</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Nonlinear systems</subject><subject>PID control</subject><subject>Process control. Computer integrated manufacturing</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkElLBDEQhYMoOC4_QchBRA-tWXpJe5FhXHFAQYW5hSzVGunutEkrzL8344hXT0VVfa8e9RA6oOSUElqePRFCioySWhzX5QlJI54tNtCEiopnTPByE03-kG20E-N7anMq2ATdP95dYuP7MfgW-wYrbN6UH53BcRlH6M7xtMdqGFpn1Oh8j0ePVY9hcBY651v_mhYt7ryFdg9tNaqNsP9bd9HL9dXz7DabP9zczabzzOQlGzNhtIWcUF2ZgmutlWWGkpKVmtWacFEx0JzYqhEsbXlNIDdCNTovrK2bgvBddLS-OwT_8QlxlJ2LBtpW9eA_o2QVq0he8QQWa9AEH2OARg7BdSosJSVyFZ38iU6ucpF1KX-ik4ukO_w1UDF91wTVGxf_xKyoRc2KhF2sMUjPfjkIMhoHvQHrAphRWu_-MfoGnYOC6w</recordid><startdate>19970201</startdate><enddate>19970201</enddate><creator>Ghezzi, Luca L.</creator><creator>Piccardi, Carlo</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19970201</creationdate><title>PID control of a chaotic system: An application to an epidemiological model</title><author>Ghezzi, Luca L. ; Piccardi, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-8cbde401b7c53bbbad2c10626b29b03872eb30d7f82bbb390e4c8afb45dd9f503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>bifurcation analysis</topic><topic>chaotic behaviour</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Nonlinear systems</topic><topic>PID control</topic><topic>Process control. Computer integrated manufacturing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghezzi, Luca L.</creatorcontrib><creatorcontrib>Piccardi, Carlo</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghezzi, Luca L.</au><au>Piccardi, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PID control of a chaotic system: An application to an epidemiological model</atitle><jtitle>Automatica (Oxford)</jtitle><date>1997-02-01</date><risdate>1997</risdate><volume>33</volume><issue>2</issue><spage>181</spage><epage>191</epage><pages>181-191</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>This paper is devoted to the control of a nonlinear sampled system that can exhibit chaotic behaviour. The system is derived from a classical epidemiological model in which the vaccination rate is the control variable. It is shown that chaos can be removed by using a constant and suitably large vaccination rate. Nonetheless, reducing rather than suppressing chaos seems to be a more appropriate goal owing to both general and case-specific reasons. PID control laws, for the first time applied to this purpose, prove effective as well as robust, since they make the control system fairly insensitive to parameter misspecification. Bifurcation analysis and simulation play a chief role in the work.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0005-1098(96)00163-X</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 1997-02, Vol.33 (2), p.181-191 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_proquest_miscellaneous_27270473 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences bifurcation analysis chaotic behaviour Computer science control theory systems Control theory. Systems Exact sciences and technology Nonlinear systems PID control Process control. Computer integrated manufacturing |
title | PID control of a chaotic system: An application to an epidemiological model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PID%20control%20of%20a%20chaotic%20system:%20An%20application%20to%20an%20epidemiological%20model&rft.jtitle=Automatica%20(Oxford)&rft.au=Ghezzi,%20Luca%20L.&rft.date=1997-02-01&rft.volume=33&rft.issue=2&rft.spage=181&rft.epage=191&rft.pages=181-191&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/S0005-1098(96)00163-X&rft_dat=%3Cproquest_cross%3E27270473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27270473&rft_id=info:pmid/&rft_els_id=S000510989600163X&rfr_iscdi=true |