Identification of Selective PPAR-γ Modulators by Combining Pharmacophore Modeling, Molecular Docking, and Adipogenesis Assay

The clinically used glitazones (rosiglitazone and pioglitazone) for type 2 diabetes mellitus therapy have been linked to serious side effects such as fluid retention, congestive heart failure, weight gain, bone loss, and an increased risk of bladder cancer. The complete activation of PPAR-γ receptor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biochemistry and biotechnology 2023-02, Vol.195 (2), p.1014-1041
Hauptverfasser: Li, Yunwei, KS, Nagashree, Byran, Gowramma, Krishnamurthy, Praveen Thaggikuppe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1041
container_issue 2
container_start_page 1014
container_title Applied biochemistry and biotechnology
container_volume 195
creator Li, Yunwei
KS, Nagashree
Byran, Gowramma
Krishnamurthy, Praveen Thaggikuppe
description The clinically used glitazones (rosiglitazone and pioglitazone) for type 2 diabetes mellitus therapy have been linked to serious side effects such as fluid retention, congestive heart failure, weight gain, bone loss, and an increased risk of bladder cancer. The complete activation of PPAR-γ receptors in target tissues is linked to these effects. Many studies have demonstrated that partial PPAR-γ activators (GW0072, PAT5A, GQ16) give equivalent therapeutic benefits to full PPAR-γ agonists without the associated side effects. These breakthroughs cleared the path for the development of partial agonists or selective PPAR-γ modulators (SPPARγMs). This study combined pharmacophore modeling, molecular docking, and an adipogenesis experiment to identify thiazolidine analogs as SPPARMs/partial agonists. A custom library of 220 molecules was created and virtual screened to discover 90 compounds as SPPARγMs/ partial agonists. The chosen eight compounds were synthesized and tested for adipogenesis using 3T3L1 cell lines. These compounds’ partial agonistic activity was evaluated in 3T3L1 cell lines by comparing their capacity to stimulate PPAR-γ mediated adipogenesis to that of a full agonist, rosiglitazone. The findings of the adipogenesis experiment demonstrate that all eight compounds examined had a partial potential to stimulate adipogenesis when compared to the full agonist, rosiglitazone. The current investigation identified eight possible PPAR-γ partial agonists or SPPARγMs that may be effective in the treatment of type 2 diabetes mellitus.
doi_str_mv 10.1007/s12010-022-04190-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2726923912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726923912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-47ae1424adba4465f4596800c5631ee111735d135a4c8811c642a8f34c9849d43</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EokPhBVggS2xYEPC1HSdejgYKlYoY8bO2PM7N1CWxp3aCNIs-Fe_BM-HpFJBYsLL1-dxzLX2EPAX2ChhrXmfgDFjFOK-YBM0qfo8soK51iTTcJwvGG1Fx3uoT8ijnK8aAt3XzkJwIxZWULSzIzXmHYfK9d3byMdDY0884oJv8d6Tr9fJT9fMH_RC7ebBTTJlu9nQVx40PPmzp-tKm0bq4u4wJDxQOJX5ZbsVQJhJ9E92328iGji47v4tbDJh9psuc7f4xedDbIeOTu_OUfD17-2X1vrr4-O58tbyonGjqqZKNRZBc2m5jpVR1L2utWsZcrQQgAkAj6g5EbaVrWwCnJLdtL6TTrdSdFKfkxdG7S_F6xjyZ0WeHw2ADxjkb3nCludDAC_r8H_QqzimU3xVKKV12aSgUP1IuxZwT9maX_GjT3gAzh3LMsRxTyjG35ZiD-tmdet6M2P0Z-d1GAcQRyOUpbDH93f0f7S9IWJmK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766911791</pqid></control><display><type>article</type><title>Identification of Selective PPAR-γ Modulators by Combining Pharmacophore Modeling, Molecular Docking, and Adipogenesis Assay</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Yunwei ; KS, Nagashree ; Byran, Gowramma ; Krishnamurthy, Praveen Thaggikuppe</creator><creatorcontrib>Li, Yunwei ; KS, Nagashree ; Byran, Gowramma ; Krishnamurthy, Praveen Thaggikuppe</creatorcontrib><description>The clinically used glitazones (rosiglitazone and pioglitazone) for type 2 diabetes mellitus therapy have been linked to serious side effects such as fluid retention, congestive heart failure, weight gain, bone loss, and an increased risk of bladder cancer. The complete activation of PPAR-γ receptors in target tissues is linked to these effects. Many studies have demonstrated that partial PPAR-γ activators (GW0072, PAT5A, GQ16) give equivalent therapeutic benefits to full PPAR-γ agonists without the associated side effects. These breakthroughs cleared the path for the development of partial agonists or selective PPAR-γ modulators (SPPARγMs). This study combined pharmacophore modeling, molecular docking, and an adipogenesis experiment to identify thiazolidine analogs as SPPARMs/partial agonists. A custom library of 220 molecules was created and virtual screened to discover 90 compounds as SPPARγMs/ partial agonists. The chosen eight compounds were synthesized and tested for adipogenesis using 3T3L1 cell lines. These compounds’ partial agonistic activity was evaluated in 3T3L1 cell lines by comparing their capacity to stimulate PPAR-γ mediated adipogenesis to that of a full agonist, rosiglitazone. The findings of the adipogenesis experiment demonstrate that all eight compounds examined had a partial potential to stimulate adipogenesis when compared to the full agonist, rosiglitazone. The current investigation identified eight possible PPAR-γ partial agonists or SPPARγMs that may be effective in the treatment of type 2 diabetes mellitus.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-022-04190-2</identifier><identifier>PMID: 36264481</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adipogenesis ; Agonists ; Biochemistry ; Biotechnology ; Bladder cancer ; Bone loss ; Chemistry ; Chemistry and Materials Science ; Congestive heart failure ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - drug therapy ; Diabetes Mellitus, Type 2 - metabolism ; Humans ; Hypoglycemic Agents - pharmacology ; Hypoglycemic Agents - therapeutic use ; Modelling ; Modulators ; Molecular docking ; Molecular Docking Simulation ; Original Article ; Peroxisome proliferator-activated receptors ; Pharmacology ; Pharmacophore ; Pioglitazone ; PPAR gamma - agonists ; PPAR gamma - metabolism ; PPAR gamma - therapeutic use ; Rosiglitazone ; Rosiglitazone - pharmacology ; Rosiglitazone - therapeutic use ; Side effects ; Thiazolidinediones - pharmacology ; Thiazolidinediones - therapeutic use</subject><ispartof>Applied biochemistry and biotechnology, 2023-02, Vol.195 (2), p.1014-1041</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-47ae1424adba4465f4596800c5631ee111735d135a4c8811c642a8f34c9849d43</citedby><cites>FETCH-LOGICAL-c375t-47ae1424adba4465f4596800c5631ee111735d135a4c8811c642a8f34c9849d43</cites><orcidid>0000-0003-2666-0878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12010-022-04190-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12010-022-04190-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36264481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yunwei</creatorcontrib><creatorcontrib>KS, Nagashree</creatorcontrib><creatorcontrib>Byran, Gowramma</creatorcontrib><creatorcontrib>Krishnamurthy, Praveen Thaggikuppe</creatorcontrib><title>Identification of Selective PPAR-γ Modulators by Combining Pharmacophore Modeling, Molecular Docking, and Adipogenesis Assay</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><addtitle>Appl Biochem Biotechnol</addtitle><description>The clinically used glitazones (rosiglitazone and pioglitazone) for type 2 diabetes mellitus therapy have been linked to serious side effects such as fluid retention, congestive heart failure, weight gain, bone loss, and an increased risk of bladder cancer. The complete activation of PPAR-γ receptors in target tissues is linked to these effects. Many studies have demonstrated that partial PPAR-γ activators (GW0072, PAT5A, GQ16) give equivalent therapeutic benefits to full PPAR-γ agonists without the associated side effects. These breakthroughs cleared the path for the development of partial agonists or selective PPAR-γ modulators (SPPARγMs). This study combined pharmacophore modeling, molecular docking, and an adipogenesis experiment to identify thiazolidine analogs as SPPARMs/partial agonists. A custom library of 220 molecules was created and virtual screened to discover 90 compounds as SPPARγMs/ partial agonists. The chosen eight compounds were synthesized and tested for adipogenesis using 3T3L1 cell lines. These compounds’ partial agonistic activity was evaluated in 3T3L1 cell lines by comparing their capacity to stimulate PPAR-γ mediated adipogenesis to that of a full agonist, rosiglitazone. The findings of the adipogenesis experiment demonstrate that all eight compounds examined had a partial potential to stimulate adipogenesis when compared to the full agonist, rosiglitazone. The current investigation identified eight possible PPAR-γ partial agonists or SPPARγMs that may be effective in the treatment of type 2 diabetes mellitus.</description><subject>Adipogenesis</subject><subject>Agonists</subject><subject>Biochemistry</subject><subject>Biotechnology</subject><subject>Bladder cancer</subject><subject>Bone loss</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Congestive heart failure</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - drug therapy</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Humans</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Hypoglycemic Agents - therapeutic use</subject><subject>Modelling</subject><subject>Modulators</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Original Article</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Pharmacology</subject><subject>Pharmacophore</subject><subject>Pioglitazone</subject><subject>PPAR gamma - agonists</subject><subject>PPAR gamma - metabolism</subject><subject>PPAR gamma - therapeutic use</subject><subject>Rosiglitazone</subject><subject>Rosiglitazone - pharmacology</subject><subject>Rosiglitazone - therapeutic use</subject><subject>Side effects</subject><subject>Thiazolidinediones - pharmacology</subject><subject>Thiazolidinediones - therapeutic use</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAURi0EokPhBVggS2xYEPC1HSdejgYKlYoY8bO2PM7N1CWxp3aCNIs-Fe_BM-HpFJBYsLL1-dxzLX2EPAX2ChhrXmfgDFjFOK-YBM0qfo8soK51iTTcJwvGG1Fx3uoT8ijnK8aAt3XzkJwIxZWULSzIzXmHYfK9d3byMdDY0884oJv8d6Tr9fJT9fMH_RC7ebBTTJlu9nQVx40PPmzp-tKm0bq4u4wJDxQOJX5ZbsVQJhJ9E92328iGji47v4tbDJh9psuc7f4xedDbIeOTu_OUfD17-2X1vrr4-O58tbyonGjqqZKNRZBc2m5jpVR1L2utWsZcrQQgAkAj6g5EbaVrWwCnJLdtL6TTrdSdFKfkxdG7S_F6xjyZ0WeHw2ADxjkb3nCludDAC_r8H_QqzimU3xVKKV12aSgUP1IuxZwT9maX_GjT3gAzh3LMsRxTyjG35ZiD-tmdet6M2P0Z-d1GAcQRyOUpbDH93f0f7S9IWJmK</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Li, Yunwei</creator><creator>KS, Nagashree</creator><creator>Byran, Gowramma</creator><creator>Krishnamurthy, Praveen Thaggikuppe</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2666-0878</orcidid></search><sort><creationdate>20230201</creationdate><title>Identification of Selective PPAR-γ Modulators by Combining Pharmacophore Modeling, Molecular Docking, and Adipogenesis Assay</title><author>Li, Yunwei ; KS, Nagashree ; Byran, Gowramma ; Krishnamurthy, Praveen Thaggikuppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-47ae1424adba4465f4596800c5631ee111735d135a4c8811c642a8f34c9849d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adipogenesis</topic><topic>Agonists</topic><topic>Biochemistry</topic><topic>Biotechnology</topic><topic>Bladder cancer</topic><topic>Bone loss</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Congestive heart failure</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - drug therapy</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Humans</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Hypoglycemic Agents - therapeutic use</topic><topic>Modelling</topic><topic>Modulators</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Original Article</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Pharmacology</topic><topic>Pharmacophore</topic><topic>Pioglitazone</topic><topic>PPAR gamma - agonists</topic><topic>PPAR gamma - metabolism</topic><topic>PPAR gamma - therapeutic use</topic><topic>Rosiglitazone</topic><topic>Rosiglitazone - pharmacology</topic><topic>Rosiglitazone - therapeutic use</topic><topic>Side effects</topic><topic>Thiazolidinediones - pharmacology</topic><topic>Thiazolidinediones - therapeutic use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yunwei</creatorcontrib><creatorcontrib>KS, Nagashree</creatorcontrib><creatorcontrib>Byran, Gowramma</creatorcontrib><creatorcontrib>Krishnamurthy, Praveen Thaggikuppe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yunwei</au><au>KS, Nagashree</au><au>Byran, Gowramma</au><au>Krishnamurthy, Praveen Thaggikuppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Selective PPAR-γ Modulators by Combining Pharmacophore Modeling, Molecular Docking, and Adipogenesis Assay</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><stitle>Appl Biochem Biotechnol</stitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>195</volume><issue>2</issue><spage>1014</spage><epage>1041</epage><pages>1014-1041</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><abstract>The clinically used glitazones (rosiglitazone and pioglitazone) for type 2 diabetes mellitus therapy have been linked to serious side effects such as fluid retention, congestive heart failure, weight gain, bone loss, and an increased risk of bladder cancer. The complete activation of PPAR-γ receptors in target tissues is linked to these effects. Many studies have demonstrated that partial PPAR-γ activators (GW0072, PAT5A, GQ16) give equivalent therapeutic benefits to full PPAR-γ agonists without the associated side effects. These breakthroughs cleared the path for the development of partial agonists or selective PPAR-γ modulators (SPPARγMs). This study combined pharmacophore modeling, molecular docking, and an adipogenesis experiment to identify thiazolidine analogs as SPPARMs/partial agonists. A custom library of 220 molecules was created and virtual screened to discover 90 compounds as SPPARγMs/ partial agonists. The chosen eight compounds were synthesized and tested for adipogenesis using 3T3L1 cell lines. These compounds’ partial agonistic activity was evaluated in 3T3L1 cell lines by comparing their capacity to stimulate PPAR-γ mediated adipogenesis to that of a full agonist, rosiglitazone. The findings of the adipogenesis experiment demonstrate that all eight compounds examined had a partial potential to stimulate adipogenesis when compared to the full agonist, rosiglitazone. The current investigation identified eight possible PPAR-γ partial agonists or SPPARγMs that may be effective in the treatment of type 2 diabetes mellitus.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36264481</pmid><doi>10.1007/s12010-022-04190-2</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-2666-0878</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0273-2289
ispartof Applied biochemistry and biotechnology, 2023-02, Vol.195 (2), p.1014-1041
issn 0273-2289
1559-0291
language eng
recordid cdi_proquest_miscellaneous_2726923912
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adipogenesis
Agonists
Biochemistry
Biotechnology
Bladder cancer
Bone loss
Chemistry
Chemistry and Materials Science
Congestive heart failure
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - drug therapy
Diabetes Mellitus, Type 2 - metabolism
Humans
Hypoglycemic Agents - pharmacology
Hypoglycemic Agents - therapeutic use
Modelling
Modulators
Molecular docking
Molecular Docking Simulation
Original Article
Peroxisome proliferator-activated receptors
Pharmacology
Pharmacophore
Pioglitazone
PPAR gamma - agonists
PPAR gamma - metabolism
PPAR gamma - therapeutic use
Rosiglitazone
Rosiglitazone - pharmacology
Rosiglitazone - therapeutic use
Side effects
Thiazolidinediones - pharmacology
Thiazolidinediones - therapeutic use
title Identification of Selective PPAR-γ Modulators by Combining Pharmacophore Modeling, Molecular Docking, and Adipogenesis Assay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Selective%20PPAR-%CE%B3%20Modulators%20by%20Combining%20Pharmacophore%20Modeling,%20Molecular%20Docking,%20and%20Adipogenesis%20Assay&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Li,%20Yunwei&rft.date=2023-02-01&rft.volume=195&rft.issue=2&rft.spage=1014&rft.epage=1041&rft.pages=1014-1041&rft.issn=0273-2289&rft.eissn=1559-0291&rft_id=info:doi/10.1007/s12010-022-04190-2&rft_dat=%3Cproquest_cross%3E2726923912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766911791&rft_id=info:pmid/36264481&rfr_iscdi=true