TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1‐mediated proline biosynthesis to enhance drought tolerance in wheat

Summary Drought stress limits wheat production and threatens food security world‐wide. While ethylene‐responsive factors (ERFs) are known to regulate plant response to drought stress, the regulatory mechanisms responsible for a tolerant phenotype remain unclear. Here, we describe the positive regula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2023-01, Vol.237 (1), p.232-250
Hauptverfasser: Du, Linying, Huang, Xueling, Ding, Li, Wang, Zhongxue, Tang, Dongling, Chen, Bin, Ao, Lanjiya, Liu, Yuling, Kang, Zhensheng, Mao, Hude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 1
container_start_page 232
container_title The New phytologist
container_volume 237
creator Du, Linying
Huang, Xueling
Ding, Li
Wang, Zhongxue
Tang, Dongling
Chen, Bin
Ao, Lanjiya
Liu, Yuling
Kang, Zhensheng
Mao, Hude
description Summary Drought stress limits wheat production and threatens food security world‐wide. While ethylene‐responsive factors (ERFs) are known to regulate plant response to drought stress, the regulatory mechanisms responsible for a tolerant phenotype remain unclear. Here, we describe the positive regulatory role of TaERF87 in mediating wheat tolerance to drought stress. TaERF87 overexpression (OE) enhances drought tolerance, while silencing leads to drought sensitivity in wheat. RNA sequencing with biochemical assays revealed that TaERF87 activates the expression of the proline biosynthesis genes TaP5CS1 and TaP5CR1 via direct binding to GCC‐box elements. Furthermore, proline accumulates to higher levels in TaERF87‐ and TaP5CS1‐OE lines than that in wild‐type plants under well‐watered and drought stress conditions concomitantly with enhanced drought tolerance in these transgenic lines. Moreover, the interaction between TaERF87 and the bHLH transcription factor TaAKS1 synergistically enhances TaP5CS1 and TaP5CR1 transcriptional activation. TaAKS1 OE also increases wheat drought tolerance by promoting proline accumulation. Additionally, our findings verified that TaERF87 and TaAKS1 are targets of abscisic acid‐responsive element binding factor 2 (TaABF2). Together, our study elucidates the mechanisms underlying a positive response to drought stress mediated by the TaABF2–TaERF87/TaAKS1–TaP5CS1/TaP5CR1 module, and identifies candidate genes for the development of elite drought‐tolerant wheat varieties.
doi_str_mv 10.1111/nph.18549
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2726923701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726923701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3539-dd67c9ccc99eac0ac19eede0459bb86564548bfa880f6a1444c6d7d3e3b3e7403</originalsourceid><addsrcrecordid>eNp1kc9OGzEQxq0KVALtoS9QWeIChyX-t971EUVQKlCLIJV6W3ntSdbI8QZ7Vyi38gY8Y5-kbkJ7qNS5jDTzm08z8yH0gZIzmmMa1t0ZrUuh3qAJFVIVNeXVHpoQwupCCvn9AB2m9EAIUaVkb9EBl0yKUpYT9DzXF3eXdYV1sHiuz6_vKU6bAHHp0uCM9n6DIyxHrwfI_dtydk-n23xHf_54WYF1uWPxOvbeBcCt6_P40EFyCQ89htDpYADb2I_LbsglD3FbcQE_daCHd2h_oX2C96_5CH27vJjProqbr58-z85vCsNLrgprZWWUMUYp0IZoQxWABSJK1ba1LPM9om4Xuq7JQmoqhDDSVpYDbzlUgvAjdLLTzas-jpCGZuWSAe91gH5MDauYVIxXhGb0-B_0oR9jyNtlKv-XMkZZpk53lIl9ShEWzTq6lY6bhpLmty9N9qXZ-pLZj6-KY5t_9pf8Y0QGpjvgyXnY_F-p-XJ7tZP8BW4GmDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2746912212</pqid></control><display><type>article</type><title>TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1‐mediated proline biosynthesis to enhance drought tolerance in wheat</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Du, Linying ; Huang, Xueling ; Ding, Li ; Wang, Zhongxue ; Tang, Dongling ; Chen, Bin ; Ao, Lanjiya ; Liu, Yuling ; Kang, Zhensheng ; Mao, Hude</creator><creatorcontrib>Du, Linying ; Huang, Xueling ; Ding, Li ; Wang, Zhongxue ; Tang, Dongling ; Chen, Bin ; Ao, Lanjiya ; Liu, Yuling ; Kang, Zhensheng ; Mao, Hude</creatorcontrib><description>Summary Drought stress limits wheat production and threatens food security world‐wide. While ethylene‐responsive factors (ERFs) are known to regulate plant response to drought stress, the regulatory mechanisms responsible for a tolerant phenotype remain unclear. Here, we describe the positive regulatory role of TaERF87 in mediating wheat tolerance to drought stress. TaERF87 overexpression (OE) enhances drought tolerance, while silencing leads to drought sensitivity in wheat. RNA sequencing with biochemical assays revealed that TaERF87 activates the expression of the proline biosynthesis genes TaP5CS1 and TaP5CR1 via direct binding to GCC‐box elements. Furthermore, proline accumulates to higher levels in TaERF87‐ and TaP5CS1‐OE lines than that in wild‐type plants under well‐watered and drought stress conditions concomitantly with enhanced drought tolerance in these transgenic lines. Moreover, the interaction between TaERF87 and the bHLH transcription factor TaAKS1 synergistically enhances TaP5CS1 and TaP5CR1 transcriptional activation. TaAKS1 OE also increases wheat drought tolerance by promoting proline accumulation. Additionally, our findings verified that TaERF87 and TaAKS1 are targets of abscisic acid‐responsive element binding factor 2 (TaABF2). Together, our study elucidates the mechanisms underlying a positive response to drought stress mediated by the TaABF2–TaERF87/TaAKS1–TaP5CS1/TaP5CR1 module, and identifies candidate genes for the development of elite drought‐tolerant wheat varieties.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.18549</identifier><identifier>PMID: 36264565</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Abscisic acid ; Binding ; Biosynthesis ; Crop production ; Drought ; Drought Resistance ; drought tolerance ; Droughts ; ERF transcription factor ; Food security ; Gene Expression Regulation, Plant ; Gene sequencing ; Genes ; Helix-loop-helix proteins (basic) ; Phenotypes ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants, Genetically Modified - metabolism ; Proline ; Proline - metabolism ; proline biosynthesis ; Regulatory mechanisms (biology) ; Regulatory sequences ; RNA sequencing ; Stress, Physiological - genetics ; TaAKS1 ; TaERF87 ; Transcription ; Transcription activation ; Triticum - metabolism ; Wheat</subject><ispartof>The New phytologist, 2023-01, Vol.237 (1), p.232-250</ispartof><rights>2022 The Authors. © 2022 New Phytologist Foundation.</rights><rights>2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.</rights><rights>Copyright © 2023 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3539-dd67c9ccc99eac0ac19eede0459bb86564548bfa880f6a1444c6d7d3e3b3e7403</citedby><cites>FETCH-LOGICAL-c3539-dd67c9ccc99eac0ac19eede0459bb86564548bfa880f6a1444c6d7d3e3b3e7403</cites><orcidid>0000-0002-2484-9952 ; 0000-0002-0921-7981 ; 0000-0003-3998-5575 ; 0000-0001-5575-0122 ; 0000-0003-0623-6164 ; 0000-0003-3585-3954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.18549$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.18549$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27922,27923,45572,45573,46407,46831</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36264565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Linying</creatorcontrib><creatorcontrib>Huang, Xueling</creatorcontrib><creatorcontrib>Ding, Li</creatorcontrib><creatorcontrib>Wang, Zhongxue</creatorcontrib><creatorcontrib>Tang, Dongling</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Ao, Lanjiya</creatorcontrib><creatorcontrib>Liu, Yuling</creatorcontrib><creatorcontrib>Kang, Zhensheng</creatorcontrib><creatorcontrib>Mao, Hude</creatorcontrib><title>TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1‐mediated proline biosynthesis to enhance drought tolerance in wheat</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary Drought stress limits wheat production and threatens food security world‐wide. While ethylene‐responsive factors (ERFs) are known to regulate plant response to drought stress, the regulatory mechanisms responsible for a tolerant phenotype remain unclear. Here, we describe the positive regulatory role of TaERF87 in mediating wheat tolerance to drought stress. TaERF87 overexpression (OE) enhances drought tolerance, while silencing leads to drought sensitivity in wheat. RNA sequencing with biochemical assays revealed that TaERF87 activates the expression of the proline biosynthesis genes TaP5CS1 and TaP5CR1 via direct binding to GCC‐box elements. Furthermore, proline accumulates to higher levels in TaERF87‐ and TaP5CS1‐OE lines than that in wild‐type plants under well‐watered and drought stress conditions concomitantly with enhanced drought tolerance in these transgenic lines. Moreover, the interaction between TaERF87 and the bHLH transcription factor TaAKS1 synergistically enhances TaP5CS1 and TaP5CR1 transcriptional activation. TaAKS1 OE also increases wheat drought tolerance by promoting proline accumulation. Additionally, our findings verified that TaERF87 and TaAKS1 are targets of abscisic acid‐responsive element binding factor 2 (TaABF2). Together, our study elucidates the mechanisms underlying a positive response to drought stress mediated by the TaABF2–TaERF87/TaAKS1–TaP5CS1/TaP5CR1 module, and identifies candidate genes for the development of elite drought‐tolerant wheat varieties.</description><subject>Abscisic acid</subject><subject>Binding</subject><subject>Biosynthesis</subject><subject>Crop production</subject><subject>Drought</subject><subject>Drought Resistance</subject><subject>drought tolerance</subject><subject>Droughts</subject><subject>ERF transcription factor</subject><subject>Food security</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Helix-loop-helix proteins (basic)</subject><subject>Phenotypes</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Proline</subject><subject>Proline - metabolism</subject><subject>proline biosynthesis</subject><subject>Regulatory mechanisms (biology)</subject><subject>Regulatory sequences</subject><subject>RNA sequencing</subject><subject>Stress, Physiological - genetics</subject><subject>TaAKS1</subject><subject>TaERF87</subject><subject>Transcription</subject><subject>Transcription activation</subject><subject>Triticum - metabolism</subject><subject>Wheat</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9OGzEQxq0KVALtoS9QWeIChyX-t971EUVQKlCLIJV6W3ntSdbI8QZ7Vyi38gY8Y5-kbkJ7qNS5jDTzm08z8yH0gZIzmmMa1t0ZrUuh3qAJFVIVNeXVHpoQwupCCvn9AB2m9EAIUaVkb9EBl0yKUpYT9DzXF3eXdYV1sHiuz6_vKU6bAHHp0uCM9n6DIyxHrwfI_dtydk-n23xHf_54WYF1uWPxOvbeBcCt6_P40EFyCQ89htDpYADb2I_LbsglD3FbcQE_daCHd2h_oX2C96_5CH27vJjProqbr58-z85vCsNLrgprZWWUMUYp0IZoQxWABSJK1ba1LPM9om4Xuq7JQmoqhDDSVpYDbzlUgvAjdLLTzas-jpCGZuWSAe91gH5MDauYVIxXhGb0-B_0oR9jyNtlKv-XMkZZpk53lIl9ShEWzTq6lY6bhpLmty9N9qXZ-pLZj6-KY5t_9pf8Y0QGpjvgyXnY_F-p-XJ7tZP8BW4GmDM</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Du, Linying</creator><creator>Huang, Xueling</creator><creator>Ding, Li</creator><creator>Wang, Zhongxue</creator><creator>Tang, Dongling</creator><creator>Chen, Bin</creator><creator>Ao, Lanjiya</creator><creator>Liu, Yuling</creator><creator>Kang, Zhensheng</creator><creator>Mao, Hude</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2484-9952</orcidid><orcidid>https://orcid.org/0000-0002-0921-7981</orcidid><orcidid>https://orcid.org/0000-0003-3998-5575</orcidid><orcidid>https://orcid.org/0000-0001-5575-0122</orcidid><orcidid>https://orcid.org/0000-0003-0623-6164</orcidid><orcidid>https://orcid.org/0000-0003-3585-3954</orcidid></search><sort><creationdate>202301</creationdate><title>TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1‐mediated proline biosynthesis to enhance drought tolerance in wheat</title><author>Du, Linying ; Huang, Xueling ; Ding, Li ; Wang, Zhongxue ; Tang, Dongling ; Chen, Bin ; Ao, Lanjiya ; Liu, Yuling ; Kang, Zhensheng ; Mao, Hude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3539-dd67c9ccc99eac0ac19eede0459bb86564548bfa880f6a1444c6d7d3e3b3e7403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abscisic acid</topic><topic>Binding</topic><topic>Biosynthesis</topic><topic>Crop production</topic><topic>Drought</topic><topic>Drought Resistance</topic><topic>drought tolerance</topic><topic>Droughts</topic><topic>ERF transcription factor</topic><topic>Food security</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Helix-loop-helix proteins (basic)</topic><topic>Phenotypes</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Proline</topic><topic>Proline - metabolism</topic><topic>proline biosynthesis</topic><topic>Regulatory mechanisms (biology)</topic><topic>Regulatory sequences</topic><topic>RNA sequencing</topic><topic>Stress, Physiological - genetics</topic><topic>TaAKS1</topic><topic>TaERF87</topic><topic>Transcription</topic><topic>Transcription activation</topic><topic>Triticum - metabolism</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Linying</creatorcontrib><creatorcontrib>Huang, Xueling</creatorcontrib><creatorcontrib>Ding, Li</creatorcontrib><creatorcontrib>Wang, Zhongxue</creatorcontrib><creatorcontrib>Tang, Dongling</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Ao, Lanjiya</creatorcontrib><creatorcontrib>Liu, Yuling</creatorcontrib><creatorcontrib>Kang, Zhensheng</creatorcontrib><creatorcontrib>Mao, Hude</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Linying</au><au>Huang, Xueling</au><au>Ding, Li</au><au>Wang, Zhongxue</au><au>Tang, Dongling</au><au>Chen, Bin</au><au>Ao, Lanjiya</au><au>Liu, Yuling</au><au>Kang, Zhensheng</au><au>Mao, Hude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1‐mediated proline biosynthesis to enhance drought tolerance in wheat</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2023-01</date><risdate>2023</risdate><volume>237</volume><issue>1</issue><spage>232</spage><epage>250</epage><pages>232-250</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary Drought stress limits wheat production and threatens food security world‐wide. While ethylene‐responsive factors (ERFs) are known to regulate plant response to drought stress, the regulatory mechanisms responsible for a tolerant phenotype remain unclear. Here, we describe the positive regulatory role of TaERF87 in mediating wheat tolerance to drought stress. TaERF87 overexpression (OE) enhances drought tolerance, while silencing leads to drought sensitivity in wheat. RNA sequencing with biochemical assays revealed that TaERF87 activates the expression of the proline biosynthesis genes TaP5CS1 and TaP5CR1 via direct binding to GCC‐box elements. Furthermore, proline accumulates to higher levels in TaERF87‐ and TaP5CS1‐OE lines than that in wild‐type plants under well‐watered and drought stress conditions concomitantly with enhanced drought tolerance in these transgenic lines. Moreover, the interaction between TaERF87 and the bHLH transcription factor TaAKS1 synergistically enhances TaP5CS1 and TaP5CR1 transcriptional activation. TaAKS1 OE also increases wheat drought tolerance by promoting proline accumulation. Additionally, our findings verified that TaERF87 and TaAKS1 are targets of abscisic acid‐responsive element binding factor 2 (TaABF2). Together, our study elucidates the mechanisms underlying a positive response to drought stress mediated by the TaABF2–TaERF87/TaAKS1–TaP5CS1/TaP5CR1 module, and identifies candidate genes for the development of elite drought‐tolerant wheat varieties.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36264565</pmid><doi>10.1111/nph.18549</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2484-9952</orcidid><orcidid>https://orcid.org/0000-0002-0921-7981</orcidid><orcidid>https://orcid.org/0000-0003-3998-5575</orcidid><orcidid>https://orcid.org/0000-0001-5575-0122</orcidid><orcidid>https://orcid.org/0000-0003-0623-6164</orcidid><orcidid>https://orcid.org/0000-0003-3585-3954</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2023-01, Vol.237 (1), p.232-250
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2726923701
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals
subjects Abscisic acid
Binding
Biosynthesis
Crop production
Drought
Drought Resistance
drought tolerance
Droughts
ERF transcription factor
Food security
Gene Expression Regulation, Plant
Gene sequencing
Genes
Helix-loop-helix proteins (basic)
Phenotypes
Plant Proteins - genetics
Plant Proteins - metabolism
Plants, Genetically Modified - metabolism
Proline
Proline - metabolism
proline biosynthesis
Regulatory mechanisms (biology)
Regulatory sequences
RNA sequencing
Stress, Physiological - genetics
TaAKS1
TaERF87
Transcription
Transcription activation
Triticum - metabolism
Wheat
title TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1‐mediated proline biosynthesis to enhance drought tolerance in wheat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TaERF87%20and%20TaAKS1%20synergistically%20regulate%20TaP5CS1/TaP5CR1%E2%80%90mediated%20proline%20biosynthesis%20to%20enhance%20drought%20tolerance%20in%20wheat&rft.jtitle=The%20New%20phytologist&rft.au=Du,%20Linying&rft.date=2023-01&rft.volume=237&rft.issue=1&rft.spage=232&rft.epage=250&rft.pages=232-250&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.18549&rft_dat=%3Cproquest_cross%3E2726923701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2746912212&rft_id=info:pmid/36264565&rfr_iscdi=true