The origin of fluids and the effects of metamorphism on the primary chemical compositions of Barberton komatiites: New evidence from geochemical (REE) and isotopic (Nd, O, H, [formula omitted]) data

Numerous greenstone relics, all containing the two lowermost formations of the Onverwacht Group, occur in the Archean trondhjemitic/tonalitic gneiss terrains south of the Barberton Greenstone Belt. In this study, we report detailed petrological, geochemical and isotopic (Nd, O, H, 40Ar 39Ar ) data o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 1994, Vol.58 (2), p.969-984
Hauptverfasser: Lécuyer, C, gruau, G, Anhaeusser, C.R, Fourcade, S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerous greenstone relics, all containing the two lowermost formations of the Onverwacht Group, occur in the Archean trondhjemitic/tonalitic gneiss terrains south of the Barberton Greenstone Belt. In this study, we report detailed petrological, geochemical and isotopic (Nd, O, H, 40Ar 39Ar ) data obtained on komatiites from the Schapenburg Greenstone Remnant (SGR), the largest and best-preserved greenstone relic. The main goals are 1. (1) to date the metamorphism affecting the SGR using the 40Ar 39Ar dating method on amphiboles, 2. (2) to evaluate the effect of metamorphism on the preservation of primary isotopic and chemical signatures, 3. (3) to estimate the temperature and water/rock ratios that prevailed during metamorphic recrystallization in order to constrain the composition and origin of the reacting fluid phase. 40Ar 39Ar ages of 2.9 Ga obtained on two amphibole separates from the Schapenburg metavolcanics reveal the existence of a metamorphic event younger than the emplacement age (3.5 Ga). This metamorphic event belongs to a series of discrete periods of thermal activity from 3.4 to 2 Ga, each of which coincides with a major episode of magmatic activity. The ultrabasic lava flows acquired their δ 18O values (from +3.2 to +5%.) at high temperature (≈450°C) under high water/rock ratios. The reacting water had initial isotopic values typical of metamorphic fluids ( δ 18 O = +5 to +7%.; δD = −65 to −50%.). REE patterns were not disturbed by metamorphic recrystallization. Despite the long time interval between emplacement and metamorphism (≈600 Ma), ϵ Nd ( T) values are uniform throughout the whole magmatic suite, indicating that the Sm-Nd system was closed on the sample scale during metamorphism. The mantle source of these greenstones was depleted in LREE as evidence by ϵ Nd ( T) ≈ +2.5. Chemical fluxes during metamorphism were calculated for elements unfractionated by olivine removal (e.g. Na, Ca, Ti, Al, and Sr), by normalizing to Nd. They suggest a significant mobility of most major elements in the cumulate zones of the lava flows. By contrast, spinifex zones appear to have preserved most of their primary chemical signatures during metamorphic recrystallization. Their CaO Al 2O 3 and Al 2O 3 TiO 2 ratios can be used with confidence to determine the PT conditions of melting in the mantle source. A general model of water-rock interactions applied to the sedimentary and magmatic rocks of the Onverwacht Group is also presented. The model involves co
ISSN:0016-7037
1872-9533
DOI:10.1016/0016-7037(94)90519-3