Mutant Phosphodiesterase 3A Protects From Hypertension-Induced Cardiac Damage
Phosphodiesterase 3A ( ) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertro...
Gespeichert in:
Veröffentlicht in: | Circulation (New York, N.Y.) N.Y.), 2022-12, Vol.146 (23), p.1758-1778 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1778 |
---|---|
container_issue | 23 |
container_start_page | 1758 |
container_title | Circulation (New York, N.Y.) |
container_volume | 146 |
creator | Ercu, Maria Mücke, Michael B. Pallien, Tamara Markó, Lajos Sholokh, Anastasiia Schächterle, Carolin Aydin, Atakan Kidd, Alexa Walter, Stephan Esmati, Yasmin McMurray, Brandon J. Lato, Daniella F. Yumi Sunaga-Franze, Daniele Dierks, Philip H. Flores, Barbara Isabel Montesinos Walker-Gray, Ryan Gong, Maolian Merticariu, Claudia Zühlke, Kerstin Russwurm, Michael Liu, Tiannan Batolomaeus, Theda U.P. Pautz, Sabine Schelenz, Stefanie Taube, Martin Napieczynska, Hanna Heuser, Arnd Eichhorst, Jenny Lehmann, Martin Miller, Duncan C. Diecke, Sebastian Qadri, Fatimunnisa Popova, Elena Langanki, Reika Movsesian, Matthew A. Herberg, Friedrich W. Forslund, Sofia K. Müller, Dominik N. Borodina, Tatiana Maass, Philipp G. Bähring, Sylvia Hübner, Norbert Bader, Michael Klussmann, Enno |
description | Phosphodiesterase 3A (
) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart,
mutations could be protective.
We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying
mutations were established, differentiated to cardiomyocytes, and analyzed by Ca
imaging. We used Förster resonance energy transfer and biochemical assays.
We identified a new
mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB
mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The β-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the
mutations caused adaptive changes of Ca
cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding.
Although in vascular smooth muscle,
mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of
mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertensio |
doi_str_mv | 10.1161/CIRCULATIONAHA.122.060210 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2726409966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726409966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-11d34ca12f0614bdae6a893c8639a2de665506baf75c84d2988b074fe199ed343</originalsourceid><addsrcrecordid>eNpVkE1v2zAMhoViQ5Nm-wuDd9vFqb5tHQ1vbQIkbTEkZ0GR6MWbbWWSjSL_firSFeiJIPG8JPEg9JXgJSGS3Nbrn_V-U-3Wjw_VqloSSpdYYkrwFZoTQXnOBVMf0BxjrPKCUTpDNzH-Tq1khbhGMyapUKxUc7TdTqMZxuzp6OPp6F0LcYRgImSsyp6CH8GOMbsLvs9W5xOEEYbY-iFfD26y4LLaBNcam303vfkFn9DHxnQRPr_WBdrf_djVq3zzeL-uq01uOWEiJ8Qxbg2hDZaEH5wBaUrFbCmZMtSBlEJgeTBNIWzJHVVlecAFb4AoBSnKFujbZe8p-L9Teln3bbTQdWYAP0VNCyo5VkrKhKoLaoOPMUCjT6HtTThrgvWLTf3epk429cVmyn55PTMdenBvyf_6EsAvwLPvkrb4p5ueIegjmG486uQbM0yKnGJKCU1L85eRYP8A25mA8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726409966</pqid></control><display><type>article</type><title>Mutant Phosphodiesterase 3A Protects From Hypertension-Induced Cardiac Damage</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>Ercu, Maria ; Mücke, Michael B. ; Pallien, Tamara ; Markó, Lajos ; Sholokh, Anastasiia ; Schächterle, Carolin ; Aydin, Atakan ; Kidd, Alexa ; Walter, Stephan ; Esmati, Yasmin ; McMurray, Brandon J. ; Lato, Daniella F. ; Yumi Sunaga-Franze, Daniele ; Dierks, Philip H. ; Flores, Barbara Isabel Montesinos ; Walker-Gray, Ryan ; Gong, Maolian ; Merticariu, Claudia ; Zühlke, Kerstin ; Russwurm, Michael ; Liu, Tiannan ; Batolomaeus, Theda U.P. ; Pautz, Sabine ; Schelenz, Stefanie ; Taube, Martin ; Napieczynska, Hanna ; Heuser, Arnd ; Eichhorst, Jenny ; Lehmann, Martin ; Miller, Duncan C. ; Diecke, Sebastian ; Qadri, Fatimunnisa ; Popova, Elena ; Langanki, Reika ; Movsesian, Matthew A. ; Herberg, Friedrich W. ; Forslund, Sofia K. ; Müller, Dominik N. ; Borodina, Tatiana ; Maass, Philipp G. ; Bähring, Sylvia ; Hübner, Norbert ; Bader, Michael ; Klussmann, Enno</creator><creatorcontrib>Ercu, Maria ; Mücke, Michael B. ; Pallien, Tamara ; Markó, Lajos ; Sholokh, Anastasiia ; Schächterle, Carolin ; Aydin, Atakan ; Kidd, Alexa ; Walter, Stephan ; Esmati, Yasmin ; McMurray, Brandon J. ; Lato, Daniella F. ; Yumi Sunaga-Franze, Daniele ; Dierks, Philip H. ; Flores, Barbara Isabel Montesinos ; Walker-Gray, Ryan ; Gong, Maolian ; Merticariu, Claudia ; Zühlke, Kerstin ; Russwurm, Michael ; Liu, Tiannan ; Batolomaeus, Theda U.P. ; Pautz, Sabine ; Schelenz, Stefanie ; Taube, Martin ; Napieczynska, Hanna ; Heuser, Arnd ; Eichhorst, Jenny ; Lehmann, Martin ; Miller, Duncan C. ; Diecke, Sebastian ; Qadri, Fatimunnisa ; Popova, Elena ; Langanki, Reika ; Movsesian, Matthew A. ; Herberg, Friedrich W. ; Forslund, Sofia K. ; Müller, Dominik N. ; Borodina, Tatiana ; Maass, Philipp G. ; Bähring, Sylvia ; Hübner, Norbert ; Bader, Michael ; Klussmann, Enno</creatorcontrib><description>Phosphodiesterase 3A (
) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart,
mutations could be protective.
We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying
mutations were established, differentiated to cardiomyocytes, and analyzed by Ca
imaging. We used Förster resonance energy transfer and biochemical assays.
We identified a new
mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB
mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The β-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the
mutations caused adaptive changes of Ca
cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding.
Although in vascular smooth muscle,
mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of
mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.</description><identifier>ISSN: 0009-7322</identifier><identifier>EISSN: 1524-4539</identifier><identifier>DOI: 10.1161/CIRCULATIONAHA.122.060210</identifier><identifier>PMID: 36259389</identifier><language>eng</language><publisher>United States: Lippincott Williams & Wilkins</publisher><subject>Animals ; Cardiomegaly ; Cyclic Nucleotide Phosphodiesterases, Type 3 - genetics ; Cyclic Nucleotide Phosphodiesterases, Type 3 - metabolism ; Heart Failure ; Humans ; Hypertension - complications ; Hypertension - genetics ; Induced Pluripotent Stem Cells - metabolism ; Myocytes, Cardiac - metabolism ; Rats ; RNA ; X-Ray Microtomography</subject><ispartof>Circulation (New York, N.Y.), 2022-12, Vol.146 (23), p.1758-1778</ispartof><rights>Lippincott Williams & Wilkins</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4135-11d34ca12f0614bdae6a893c8639a2de665506baf75c84d2988b074fe199ed343</citedby><cites>FETCH-LOGICAL-c4135-11d34ca12f0614bdae6a893c8639a2de665506baf75c84d2988b074fe199ed343</cites><orcidid>0000-0002-6851-9162 ; 0000-0001-7117-7653 ; 0000-0002-4957-3307 ; 0000-0002-2041-2921 ; 0000-0002-1263-2078 ; 0000-0001-5903-8343 ; 0000-0001-9852-677X ; 0000-0003-1888-5575 ; 0000-0003-3650-5644 ; 0000-0001-7384-3429 ; 0000-0002-9263-8532 ; 0000-0003-4004-5003 ; 0000-0003-3394-0667 ; 0000-0001-8734-9755 ; 0000-0002-5156-7184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3674,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36259389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ercu, Maria</creatorcontrib><creatorcontrib>Mücke, Michael B.</creatorcontrib><creatorcontrib>Pallien, Tamara</creatorcontrib><creatorcontrib>Markó, Lajos</creatorcontrib><creatorcontrib>Sholokh, Anastasiia</creatorcontrib><creatorcontrib>Schächterle, Carolin</creatorcontrib><creatorcontrib>Aydin, Atakan</creatorcontrib><creatorcontrib>Kidd, Alexa</creatorcontrib><creatorcontrib>Walter, Stephan</creatorcontrib><creatorcontrib>Esmati, Yasmin</creatorcontrib><creatorcontrib>McMurray, Brandon J.</creatorcontrib><creatorcontrib>Lato, Daniella F.</creatorcontrib><creatorcontrib>Yumi Sunaga-Franze, Daniele</creatorcontrib><creatorcontrib>Dierks, Philip H.</creatorcontrib><creatorcontrib>Flores, Barbara Isabel Montesinos</creatorcontrib><creatorcontrib>Walker-Gray, Ryan</creatorcontrib><creatorcontrib>Gong, Maolian</creatorcontrib><creatorcontrib>Merticariu, Claudia</creatorcontrib><creatorcontrib>Zühlke, Kerstin</creatorcontrib><creatorcontrib>Russwurm, Michael</creatorcontrib><creatorcontrib>Liu, Tiannan</creatorcontrib><creatorcontrib>Batolomaeus, Theda U.P.</creatorcontrib><creatorcontrib>Pautz, Sabine</creatorcontrib><creatorcontrib>Schelenz, Stefanie</creatorcontrib><creatorcontrib>Taube, Martin</creatorcontrib><creatorcontrib>Napieczynska, Hanna</creatorcontrib><creatorcontrib>Heuser, Arnd</creatorcontrib><creatorcontrib>Eichhorst, Jenny</creatorcontrib><creatorcontrib>Lehmann, Martin</creatorcontrib><creatorcontrib>Miller, Duncan C.</creatorcontrib><creatorcontrib>Diecke, Sebastian</creatorcontrib><creatorcontrib>Qadri, Fatimunnisa</creatorcontrib><creatorcontrib>Popova, Elena</creatorcontrib><creatorcontrib>Langanki, Reika</creatorcontrib><creatorcontrib>Movsesian, Matthew A.</creatorcontrib><creatorcontrib>Herberg, Friedrich W.</creatorcontrib><creatorcontrib>Forslund, Sofia K.</creatorcontrib><creatorcontrib>Müller, Dominik N.</creatorcontrib><creatorcontrib>Borodina, Tatiana</creatorcontrib><creatorcontrib>Maass, Philipp G.</creatorcontrib><creatorcontrib>Bähring, Sylvia</creatorcontrib><creatorcontrib>Hübner, Norbert</creatorcontrib><creatorcontrib>Bader, Michael</creatorcontrib><creatorcontrib>Klussmann, Enno</creatorcontrib><title>Mutant Phosphodiesterase 3A Protects From Hypertension-Induced Cardiac Damage</title><title>Circulation (New York, N.Y.)</title><addtitle>Circulation</addtitle><description>Phosphodiesterase 3A (
) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart,
mutations could be protective.
We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying
mutations were established, differentiated to cardiomyocytes, and analyzed by Ca
imaging. We used Förster resonance energy transfer and biochemical assays.
We identified a new
mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB
mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The β-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the
mutations caused adaptive changes of Ca
cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding.
Although in vascular smooth muscle,
mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of
mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.</description><subject>Animals</subject><subject>Cardiomegaly</subject><subject>Cyclic Nucleotide Phosphodiesterases, Type 3 - genetics</subject><subject>Cyclic Nucleotide Phosphodiesterases, Type 3 - metabolism</subject><subject>Heart Failure</subject><subject>Humans</subject><subject>Hypertension - complications</subject><subject>Hypertension - genetics</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Rats</subject><subject>RNA</subject><subject>X-Ray Microtomography</subject><issn>0009-7322</issn><issn>1524-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1v2zAMhoViQ5Nm-wuDd9vFqb5tHQ1vbQIkbTEkZ0GR6MWbbWWSjSL_firSFeiJIPG8JPEg9JXgJSGS3Nbrn_V-U-3Wjw_VqloSSpdYYkrwFZoTQXnOBVMf0BxjrPKCUTpDNzH-Tq1khbhGMyapUKxUc7TdTqMZxuzp6OPp6F0LcYRgImSsyp6CH8GOMbsLvs9W5xOEEYbY-iFfD26y4LLaBNcam303vfkFn9DHxnQRPr_WBdrf_djVq3zzeL-uq01uOWEiJ8Qxbg2hDZaEH5wBaUrFbCmZMtSBlEJgeTBNIWzJHVVlecAFb4AoBSnKFujbZe8p-L9Teln3bbTQdWYAP0VNCyo5VkrKhKoLaoOPMUCjT6HtTThrgvWLTf3epk429cVmyn55PTMdenBvyf_6EsAvwLPvkrb4p5ueIegjmG486uQbM0yKnGJKCU1L85eRYP8A25mA8A</recordid><startdate>20221206</startdate><enddate>20221206</enddate><creator>Ercu, Maria</creator><creator>Mücke, Michael B.</creator><creator>Pallien, Tamara</creator><creator>Markó, Lajos</creator><creator>Sholokh, Anastasiia</creator><creator>Schächterle, Carolin</creator><creator>Aydin, Atakan</creator><creator>Kidd, Alexa</creator><creator>Walter, Stephan</creator><creator>Esmati, Yasmin</creator><creator>McMurray, Brandon J.</creator><creator>Lato, Daniella F.</creator><creator>Yumi Sunaga-Franze, Daniele</creator><creator>Dierks, Philip H.</creator><creator>Flores, Barbara Isabel Montesinos</creator><creator>Walker-Gray, Ryan</creator><creator>Gong, Maolian</creator><creator>Merticariu, Claudia</creator><creator>Zühlke, Kerstin</creator><creator>Russwurm, Michael</creator><creator>Liu, Tiannan</creator><creator>Batolomaeus, Theda U.P.</creator><creator>Pautz, Sabine</creator><creator>Schelenz, Stefanie</creator><creator>Taube, Martin</creator><creator>Napieczynska, Hanna</creator><creator>Heuser, Arnd</creator><creator>Eichhorst, Jenny</creator><creator>Lehmann, Martin</creator><creator>Miller, Duncan C.</creator><creator>Diecke, Sebastian</creator><creator>Qadri, Fatimunnisa</creator><creator>Popova, Elena</creator><creator>Langanki, Reika</creator><creator>Movsesian, Matthew A.</creator><creator>Herberg, Friedrich W.</creator><creator>Forslund, Sofia K.</creator><creator>Müller, Dominik N.</creator><creator>Borodina, Tatiana</creator><creator>Maass, Philipp G.</creator><creator>Bähring, Sylvia</creator><creator>Hübner, Norbert</creator><creator>Bader, Michael</creator><creator>Klussmann, Enno</creator><general>Lippincott Williams & Wilkins</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6851-9162</orcidid><orcidid>https://orcid.org/0000-0001-7117-7653</orcidid><orcidid>https://orcid.org/0000-0002-4957-3307</orcidid><orcidid>https://orcid.org/0000-0002-2041-2921</orcidid><orcidid>https://orcid.org/0000-0002-1263-2078</orcidid><orcidid>https://orcid.org/0000-0001-5903-8343</orcidid><orcidid>https://orcid.org/0000-0001-9852-677X</orcidid><orcidid>https://orcid.org/0000-0003-1888-5575</orcidid><orcidid>https://orcid.org/0000-0003-3650-5644</orcidid><orcidid>https://orcid.org/0000-0001-7384-3429</orcidid><orcidid>https://orcid.org/0000-0002-9263-8532</orcidid><orcidid>https://orcid.org/0000-0003-4004-5003</orcidid><orcidid>https://orcid.org/0000-0003-3394-0667</orcidid><orcidid>https://orcid.org/0000-0001-8734-9755</orcidid><orcidid>https://orcid.org/0000-0002-5156-7184</orcidid></search><sort><creationdate>20221206</creationdate><title>Mutant Phosphodiesterase 3A Protects From Hypertension-Induced Cardiac Damage</title><author>Ercu, Maria ; Mücke, Michael B. ; Pallien, Tamara ; Markó, Lajos ; Sholokh, Anastasiia ; Schächterle, Carolin ; Aydin, Atakan ; Kidd, Alexa ; Walter, Stephan ; Esmati, Yasmin ; McMurray, Brandon J. ; Lato, Daniella F. ; Yumi Sunaga-Franze, Daniele ; Dierks, Philip H. ; Flores, Barbara Isabel Montesinos ; Walker-Gray, Ryan ; Gong, Maolian ; Merticariu, Claudia ; Zühlke, Kerstin ; Russwurm, Michael ; Liu, Tiannan ; Batolomaeus, Theda U.P. ; Pautz, Sabine ; Schelenz, Stefanie ; Taube, Martin ; Napieczynska, Hanna ; Heuser, Arnd ; Eichhorst, Jenny ; Lehmann, Martin ; Miller, Duncan C. ; Diecke, Sebastian ; Qadri, Fatimunnisa ; Popova, Elena ; Langanki, Reika ; Movsesian, Matthew A. ; Herberg, Friedrich W. ; Forslund, Sofia K. ; Müller, Dominik N. ; Borodina, Tatiana ; Maass, Philipp G. ; Bähring, Sylvia ; Hübner, Norbert ; Bader, Michael ; Klussmann, Enno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-11d34ca12f0614bdae6a893c8639a2de665506baf75c84d2988b074fe199ed343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Cardiomegaly</topic><topic>Cyclic Nucleotide Phosphodiesterases, Type 3 - genetics</topic><topic>Cyclic Nucleotide Phosphodiesterases, Type 3 - metabolism</topic><topic>Heart Failure</topic><topic>Humans</topic><topic>Hypertension - complications</topic><topic>Hypertension - genetics</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Rats</topic><topic>RNA</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ercu, Maria</creatorcontrib><creatorcontrib>Mücke, Michael B.</creatorcontrib><creatorcontrib>Pallien, Tamara</creatorcontrib><creatorcontrib>Markó, Lajos</creatorcontrib><creatorcontrib>Sholokh, Anastasiia</creatorcontrib><creatorcontrib>Schächterle, Carolin</creatorcontrib><creatorcontrib>Aydin, Atakan</creatorcontrib><creatorcontrib>Kidd, Alexa</creatorcontrib><creatorcontrib>Walter, Stephan</creatorcontrib><creatorcontrib>Esmati, Yasmin</creatorcontrib><creatorcontrib>McMurray, Brandon J.</creatorcontrib><creatorcontrib>Lato, Daniella F.</creatorcontrib><creatorcontrib>Yumi Sunaga-Franze, Daniele</creatorcontrib><creatorcontrib>Dierks, Philip H.</creatorcontrib><creatorcontrib>Flores, Barbara Isabel Montesinos</creatorcontrib><creatorcontrib>Walker-Gray, Ryan</creatorcontrib><creatorcontrib>Gong, Maolian</creatorcontrib><creatorcontrib>Merticariu, Claudia</creatorcontrib><creatorcontrib>Zühlke, Kerstin</creatorcontrib><creatorcontrib>Russwurm, Michael</creatorcontrib><creatorcontrib>Liu, Tiannan</creatorcontrib><creatorcontrib>Batolomaeus, Theda U.P.</creatorcontrib><creatorcontrib>Pautz, Sabine</creatorcontrib><creatorcontrib>Schelenz, Stefanie</creatorcontrib><creatorcontrib>Taube, Martin</creatorcontrib><creatorcontrib>Napieczynska, Hanna</creatorcontrib><creatorcontrib>Heuser, Arnd</creatorcontrib><creatorcontrib>Eichhorst, Jenny</creatorcontrib><creatorcontrib>Lehmann, Martin</creatorcontrib><creatorcontrib>Miller, Duncan C.</creatorcontrib><creatorcontrib>Diecke, Sebastian</creatorcontrib><creatorcontrib>Qadri, Fatimunnisa</creatorcontrib><creatorcontrib>Popova, Elena</creatorcontrib><creatorcontrib>Langanki, Reika</creatorcontrib><creatorcontrib>Movsesian, Matthew A.</creatorcontrib><creatorcontrib>Herberg, Friedrich W.</creatorcontrib><creatorcontrib>Forslund, Sofia K.</creatorcontrib><creatorcontrib>Müller, Dominik N.</creatorcontrib><creatorcontrib>Borodina, Tatiana</creatorcontrib><creatorcontrib>Maass, Philipp G.</creatorcontrib><creatorcontrib>Bähring, Sylvia</creatorcontrib><creatorcontrib>Hübner, Norbert</creatorcontrib><creatorcontrib>Bader, Michael</creatorcontrib><creatorcontrib>Klussmann, Enno</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ercu, Maria</au><au>Mücke, Michael B.</au><au>Pallien, Tamara</au><au>Markó, Lajos</au><au>Sholokh, Anastasiia</au><au>Schächterle, Carolin</au><au>Aydin, Atakan</au><au>Kidd, Alexa</au><au>Walter, Stephan</au><au>Esmati, Yasmin</au><au>McMurray, Brandon J.</au><au>Lato, Daniella F.</au><au>Yumi Sunaga-Franze, Daniele</au><au>Dierks, Philip H.</au><au>Flores, Barbara Isabel Montesinos</au><au>Walker-Gray, Ryan</au><au>Gong, Maolian</au><au>Merticariu, Claudia</au><au>Zühlke, Kerstin</au><au>Russwurm, Michael</au><au>Liu, Tiannan</au><au>Batolomaeus, Theda U.P.</au><au>Pautz, Sabine</au><au>Schelenz, Stefanie</au><au>Taube, Martin</au><au>Napieczynska, Hanna</au><au>Heuser, Arnd</au><au>Eichhorst, Jenny</au><au>Lehmann, Martin</au><au>Miller, Duncan C.</au><au>Diecke, Sebastian</au><au>Qadri, Fatimunnisa</au><au>Popova, Elena</au><au>Langanki, Reika</au><au>Movsesian, Matthew A.</au><au>Herberg, Friedrich W.</au><au>Forslund, Sofia K.</au><au>Müller, Dominik N.</au><au>Borodina, Tatiana</au><au>Maass, Philipp G.</au><au>Bähring, Sylvia</au><au>Hübner, Norbert</au><au>Bader, Michael</au><au>Klussmann, Enno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutant Phosphodiesterase 3A Protects From Hypertension-Induced Cardiac Damage</atitle><jtitle>Circulation (New York, N.Y.)</jtitle><addtitle>Circulation</addtitle><date>2022-12-06</date><risdate>2022</risdate><volume>146</volume><issue>23</issue><spage>1758</spage><epage>1778</epage><pages>1758-1778</pages><issn>0009-7322</issn><eissn>1524-4539</eissn><abstract>Phosphodiesterase 3A (
) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart,
mutations could be protective.
We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying
mutations were established, differentiated to cardiomyocytes, and analyzed by Ca
imaging. We used Förster resonance energy transfer and biochemical assays.
We identified a new
mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB
mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The β-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the
mutations caused adaptive changes of Ca
cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding.
Although in vascular smooth muscle,
mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of
mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.</abstract><cop>United States</cop><pub>Lippincott Williams & Wilkins</pub><pmid>36259389</pmid><doi>10.1161/CIRCULATIONAHA.122.060210</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-6851-9162</orcidid><orcidid>https://orcid.org/0000-0001-7117-7653</orcidid><orcidid>https://orcid.org/0000-0002-4957-3307</orcidid><orcidid>https://orcid.org/0000-0002-2041-2921</orcidid><orcidid>https://orcid.org/0000-0002-1263-2078</orcidid><orcidid>https://orcid.org/0000-0001-5903-8343</orcidid><orcidid>https://orcid.org/0000-0001-9852-677X</orcidid><orcidid>https://orcid.org/0000-0003-1888-5575</orcidid><orcidid>https://orcid.org/0000-0003-3650-5644</orcidid><orcidid>https://orcid.org/0000-0001-7384-3429</orcidid><orcidid>https://orcid.org/0000-0002-9263-8532</orcidid><orcidid>https://orcid.org/0000-0003-4004-5003</orcidid><orcidid>https://orcid.org/0000-0003-3394-0667</orcidid><orcidid>https://orcid.org/0000-0001-8734-9755</orcidid><orcidid>https://orcid.org/0000-0002-5156-7184</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-7322 |
ispartof | Circulation (New York, N.Y.), 2022-12, Vol.146 (23), p.1758-1778 |
issn | 0009-7322 1524-4539 |
language | eng |
recordid | cdi_proquest_miscellaneous_2726409966 |
source | MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete |
subjects | Animals Cardiomegaly Cyclic Nucleotide Phosphodiesterases, Type 3 - genetics Cyclic Nucleotide Phosphodiesterases, Type 3 - metabolism Heart Failure Humans Hypertension - complications Hypertension - genetics Induced Pluripotent Stem Cells - metabolism Myocytes, Cardiac - metabolism Rats RNA X-Ray Microtomography |
title | Mutant Phosphodiesterase 3A Protects From Hypertension-Induced Cardiac Damage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutant%20Phosphodiesterase%203A%20Protects%20From%20Hypertension-Induced%20Cardiac%20Damage&rft.jtitle=Circulation%20(New%20York,%20N.Y.)&rft.au=Ercu,%20Maria&rft.date=2022-12-06&rft.volume=146&rft.issue=23&rft.spage=1758&rft.epage=1778&rft.pages=1758-1778&rft.issn=0009-7322&rft.eissn=1524-4539&rft_id=info:doi/10.1161/CIRCULATIONAHA.122.060210&rft_dat=%3Cproquest_cross%3E2726409966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726409966&rft_id=info:pmid/36259389&rfr_iscdi=true |