Mutant Phosphodiesterase 3A Protects From Hypertension-Induced Cardiac Damage

Phosphodiesterase 3A ( ) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 2022-12, Vol.146 (23), p.1758-1778
Hauptverfasser: Ercu, Maria, Mücke, Michael B., Pallien, Tamara, Markó, Lajos, Sholokh, Anastasiia, Schächterle, Carolin, Aydin, Atakan, Kidd, Alexa, Walter, Stephan, Esmati, Yasmin, McMurray, Brandon J., Lato, Daniella F., Yumi Sunaga-Franze, Daniele, Dierks, Philip H., Flores, Barbara Isabel Montesinos, Walker-Gray, Ryan, Gong, Maolian, Merticariu, Claudia, Zühlke, Kerstin, Russwurm, Michael, Liu, Tiannan, Batolomaeus, Theda U.P., Pautz, Sabine, Schelenz, Stefanie, Taube, Martin, Napieczynska, Hanna, Heuser, Arnd, Eichhorst, Jenny, Lehmann, Martin, Miller, Duncan C., Diecke, Sebastian, Qadri, Fatimunnisa, Popova, Elena, Langanki, Reika, Movsesian, Matthew A., Herberg, Friedrich W., Forslund, Sofia K., Müller, Dominik N., Borodina, Tatiana, Maass, Philipp G., Bähring, Sylvia, Hübner, Norbert, Bader, Michael, Klussmann, Enno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1778
container_issue 23
container_start_page 1758
container_title Circulation (New York, N.Y.)
container_volume 146
creator Ercu, Maria
Mücke, Michael B.
Pallien, Tamara
Markó, Lajos
Sholokh, Anastasiia
Schächterle, Carolin
Aydin, Atakan
Kidd, Alexa
Walter, Stephan
Esmati, Yasmin
McMurray, Brandon J.
Lato, Daniella F.
Yumi Sunaga-Franze, Daniele
Dierks, Philip H.
Flores, Barbara Isabel Montesinos
Walker-Gray, Ryan
Gong, Maolian
Merticariu, Claudia
Zühlke, Kerstin
Russwurm, Michael
Liu, Tiannan
Batolomaeus, Theda U.P.
Pautz, Sabine
Schelenz, Stefanie
Taube, Martin
Napieczynska, Hanna
Heuser, Arnd
Eichhorst, Jenny
Lehmann, Martin
Miller, Duncan C.
Diecke, Sebastian
Qadri, Fatimunnisa
Popova, Elena
Langanki, Reika
Movsesian, Matthew A.
Herberg, Friedrich W.
Forslund, Sofia K.
Müller, Dominik N.
Borodina, Tatiana
Maass, Philipp G.
Bähring, Sylvia
Hübner, Norbert
Bader, Michael
Klussmann, Enno
description Phosphodiesterase 3A ( ) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, mutations could be protective. We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying mutations were established, differentiated to cardiomyocytes, and analyzed by Ca imaging. We used Förster resonance energy transfer and biochemical assays. We identified a new mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The β-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the mutations caused adaptive changes of Ca cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. Although in vascular smooth muscle, mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertensio
doi_str_mv 10.1161/CIRCULATIONAHA.122.060210
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2726409966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726409966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4135-11d34ca12f0614bdae6a893c8639a2de665506baf75c84d2988b074fe199ed343</originalsourceid><addsrcrecordid>eNpVkE1v2zAMhoViQ5Nm-wuDd9vFqb5tHQ1vbQIkbTEkZ0GR6MWbbWWSjSL_firSFeiJIPG8JPEg9JXgJSGS3Nbrn_V-U-3Wjw_VqloSSpdYYkrwFZoTQXnOBVMf0BxjrPKCUTpDNzH-Tq1khbhGMyapUKxUc7TdTqMZxuzp6OPp6F0LcYRgImSsyp6CH8GOMbsLvs9W5xOEEYbY-iFfD26y4LLaBNcam303vfkFn9DHxnQRPr_WBdrf_djVq3zzeL-uq01uOWEiJ8Qxbg2hDZaEH5wBaUrFbCmZMtSBlEJgeTBNIWzJHVVlecAFb4AoBSnKFujbZe8p-L9Teln3bbTQdWYAP0VNCyo5VkrKhKoLaoOPMUCjT6HtTThrgvWLTf3epk429cVmyn55PTMdenBvyf_6EsAvwLPvkrb4p5ueIegjmG486uQbM0yKnGJKCU1L85eRYP8A25mA8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726409966</pqid></control><display><type>article</type><title>Mutant Phosphodiesterase 3A Protects From Hypertension-Induced Cardiac Damage</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>Ercu, Maria ; Mücke, Michael B. ; Pallien, Tamara ; Markó, Lajos ; Sholokh, Anastasiia ; Schächterle, Carolin ; Aydin, Atakan ; Kidd, Alexa ; Walter, Stephan ; Esmati, Yasmin ; McMurray, Brandon J. ; Lato, Daniella F. ; Yumi Sunaga-Franze, Daniele ; Dierks, Philip H. ; Flores, Barbara Isabel Montesinos ; Walker-Gray, Ryan ; Gong, Maolian ; Merticariu, Claudia ; Zühlke, Kerstin ; Russwurm, Michael ; Liu, Tiannan ; Batolomaeus, Theda U.P. ; Pautz, Sabine ; Schelenz, Stefanie ; Taube, Martin ; Napieczynska, Hanna ; Heuser, Arnd ; Eichhorst, Jenny ; Lehmann, Martin ; Miller, Duncan C. ; Diecke, Sebastian ; Qadri, Fatimunnisa ; Popova, Elena ; Langanki, Reika ; Movsesian, Matthew A. ; Herberg, Friedrich W. ; Forslund, Sofia K. ; Müller, Dominik N. ; Borodina, Tatiana ; Maass, Philipp G. ; Bähring, Sylvia ; Hübner, Norbert ; Bader, Michael ; Klussmann, Enno</creator><creatorcontrib>Ercu, Maria ; Mücke, Michael B. ; Pallien, Tamara ; Markó, Lajos ; Sholokh, Anastasiia ; Schächterle, Carolin ; Aydin, Atakan ; Kidd, Alexa ; Walter, Stephan ; Esmati, Yasmin ; McMurray, Brandon J. ; Lato, Daniella F. ; Yumi Sunaga-Franze, Daniele ; Dierks, Philip H. ; Flores, Barbara Isabel Montesinos ; Walker-Gray, Ryan ; Gong, Maolian ; Merticariu, Claudia ; Zühlke, Kerstin ; Russwurm, Michael ; Liu, Tiannan ; Batolomaeus, Theda U.P. ; Pautz, Sabine ; Schelenz, Stefanie ; Taube, Martin ; Napieczynska, Hanna ; Heuser, Arnd ; Eichhorst, Jenny ; Lehmann, Martin ; Miller, Duncan C. ; Diecke, Sebastian ; Qadri, Fatimunnisa ; Popova, Elena ; Langanki, Reika ; Movsesian, Matthew A. ; Herberg, Friedrich W. ; Forslund, Sofia K. ; Müller, Dominik N. ; Borodina, Tatiana ; Maass, Philipp G. ; Bähring, Sylvia ; Hübner, Norbert ; Bader, Michael ; Klussmann, Enno</creatorcontrib><description>Phosphodiesterase 3A ( ) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, mutations could be protective. We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying mutations were established, differentiated to cardiomyocytes, and analyzed by Ca imaging. We used Förster resonance energy transfer and biochemical assays. We identified a new mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The β-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the mutations caused adaptive changes of Ca cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. Although in vascular smooth muscle, mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.</description><identifier>ISSN: 0009-7322</identifier><identifier>EISSN: 1524-4539</identifier><identifier>DOI: 10.1161/CIRCULATIONAHA.122.060210</identifier><identifier>PMID: 36259389</identifier><language>eng</language><publisher>United States: Lippincott Williams &amp; Wilkins</publisher><subject>Animals ; Cardiomegaly ; Cyclic Nucleotide Phosphodiesterases, Type 3 - genetics ; Cyclic Nucleotide Phosphodiesterases, Type 3 - metabolism ; Heart Failure ; Humans ; Hypertension - complications ; Hypertension - genetics ; Induced Pluripotent Stem Cells - metabolism ; Myocytes, Cardiac - metabolism ; Rats ; RNA ; X-Ray Microtomography</subject><ispartof>Circulation (New York, N.Y.), 2022-12, Vol.146 (23), p.1758-1778</ispartof><rights>Lippincott Williams &amp; Wilkins</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4135-11d34ca12f0614bdae6a893c8639a2de665506baf75c84d2988b074fe199ed343</citedby><cites>FETCH-LOGICAL-c4135-11d34ca12f0614bdae6a893c8639a2de665506baf75c84d2988b074fe199ed343</cites><orcidid>0000-0002-6851-9162 ; 0000-0001-7117-7653 ; 0000-0002-4957-3307 ; 0000-0002-2041-2921 ; 0000-0002-1263-2078 ; 0000-0001-5903-8343 ; 0000-0001-9852-677X ; 0000-0003-1888-5575 ; 0000-0003-3650-5644 ; 0000-0001-7384-3429 ; 0000-0002-9263-8532 ; 0000-0003-4004-5003 ; 0000-0003-3394-0667 ; 0000-0001-8734-9755 ; 0000-0002-5156-7184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3674,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36259389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ercu, Maria</creatorcontrib><creatorcontrib>Mücke, Michael B.</creatorcontrib><creatorcontrib>Pallien, Tamara</creatorcontrib><creatorcontrib>Markó, Lajos</creatorcontrib><creatorcontrib>Sholokh, Anastasiia</creatorcontrib><creatorcontrib>Schächterle, Carolin</creatorcontrib><creatorcontrib>Aydin, Atakan</creatorcontrib><creatorcontrib>Kidd, Alexa</creatorcontrib><creatorcontrib>Walter, Stephan</creatorcontrib><creatorcontrib>Esmati, Yasmin</creatorcontrib><creatorcontrib>McMurray, Brandon J.</creatorcontrib><creatorcontrib>Lato, Daniella F.</creatorcontrib><creatorcontrib>Yumi Sunaga-Franze, Daniele</creatorcontrib><creatorcontrib>Dierks, Philip H.</creatorcontrib><creatorcontrib>Flores, Barbara Isabel Montesinos</creatorcontrib><creatorcontrib>Walker-Gray, Ryan</creatorcontrib><creatorcontrib>Gong, Maolian</creatorcontrib><creatorcontrib>Merticariu, Claudia</creatorcontrib><creatorcontrib>Zühlke, Kerstin</creatorcontrib><creatorcontrib>Russwurm, Michael</creatorcontrib><creatorcontrib>Liu, Tiannan</creatorcontrib><creatorcontrib>Batolomaeus, Theda U.P.</creatorcontrib><creatorcontrib>Pautz, Sabine</creatorcontrib><creatorcontrib>Schelenz, Stefanie</creatorcontrib><creatorcontrib>Taube, Martin</creatorcontrib><creatorcontrib>Napieczynska, Hanna</creatorcontrib><creatorcontrib>Heuser, Arnd</creatorcontrib><creatorcontrib>Eichhorst, Jenny</creatorcontrib><creatorcontrib>Lehmann, Martin</creatorcontrib><creatorcontrib>Miller, Duncan C.</creatorcontrib><creatorcontrib>Diecke, Sebastian</creatorcontrib><creatorcontrib>Qadri, Fatimunnisa</creatorcontrib><creatorcontrib>Popova, Elena</creatorcontrib><creatorcontrib>Langanki, Reika</creatorcontrib><creatorcontrib>Movsesian, Matthew A.</creatorcontrib><creatorcontrib>Herberg, Friedrich W.</creatorcontrib><creatorcontrib>Forslund, Sofia K.</creatorcontrib><creatorcontrib>Müller, Dominik N.</creatorcontrib><creatorcontrib>Borodina, Tatiana</creatorcontrib><creatorcontrib>Maass, Philipp G.</creatorcontrib><creatorcontrib>Bähring, Sylvia</creatorcontrib><creatorcontrib>Hübner, Norbert</creatorcontrib><creatorcontrib>Bader, Michael</creatorcontrib><creatorcontrib>Klussmann, Enno</creatorcontrib><title>Mutant Phosphodiesterase 3A Protects From Hypertension-Induced Cardiac Damage</title><title>Circulation (New York, N.Y.)</title><addtitle>Circulation</addtitle><description>Phosphodiesterase 3A ( ) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, mutations could be protective. We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying mutations were established, differentiated to cardiomyocytes, and analyzed by Ca imaging. We used Förster resonance energy transfer and biochemical assays. We identified a new mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The β-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the mutations caused adaptive changes of Ca cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. Although in vascular smooth muscle, mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.</description><subject>Animals</subject><subject>Cardiomegaly</subject><subject>Cyclic Nucleotide Phosphodiesterases, Type 3 - genetics</subject><subject>Cyclic Nucleotide Phosphodiesterases, Type 3 - metabolism</subject><subject>Heart Failure</subject><subject>Humans</subject><subject>Hypertension - complications</subject><subject>Hypertension - genetics</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Rats</subject><subject>RNA</subject><subject>X-Ray Microtomography</subject><issn>0009-7322</issn><issn>1524-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1v2zAMhoViQ5Nm-wuDd9vFqb5tHQ1vbQIkbTEkZ0GR6MWbbWWSjSL_firSFeiJIPG8JPEg9JXgJSGS3Nbrn_V-U-3Wjw_VqloSSpdYYkrwFZoTQXnOBVMf0BxjrPKCUTpDNzH-Tq1khbhGMyapUKxUc7TdTqMZxuzp6OPp6F0LcYRgImSsyp6CH8GOMbsLvs9W5xOEEYbY-iFfD26y4LLaBNcam303vfkFn9DHxnQRPr_WBdrf_djVq3zzeL-uq01uOWEiJ8Qxbg2hDZaEH5wBaUrFbCmZMtSBlEJgeTBNIWzJHVVlecAFb4AoBSnKFujbZe8p-L9Teln3bbTQdWYAP0VNCyo5VkrKhKoLaoOPMUCjT6HtTThrgvWLTf3epk429cVmyn55PTMdenBvyf_6EsAvwLPvkrb4p5ueIegjmG486uQbM0yKnGJKCU1L85eRYP8A25mA8A</recordid><startdate>20221206</startdate><enddate>20221206</enddate><creator>Ercu, Maria</creator><creator>Mücke, Michael B.</creator><creator>Pallien, Tamara</creator><creator>Markó, Lajos</creator><creator>Sholokh, Anastasiia</creator><creator>Schächterle, Carolin</creator><creator>Aydin, Atakan</creator><creator>Kidd, Alexa</creator><creator>Walter, Stephan</creator><creator>Esmati, Yasmin</creator><creator>McMurray, Brandon J.</creator><creator>Lato, Daniella F.</creator><creator>Yumi Sunaga-Franze, Daniele</creator><creator>Dierks, Philip H.</creator><creator>Flores, Barbara Isabel Montesinos</creator><creator>Walker-Gray, Ryan</creator><creator>Gong, Maolian</creator><creator>Merticariu, Claudia</creator><creator>Zühlke, Kerstin</creator><creator>Russwurm, Michael</creator><creator>Liu, Tiannan</creator><creator>Batolomaeus, Theda U.P.</creator><creator>Pautz, Sabine</creator><creator>Schelenz, Stefanie</creator><creator>Taube, Martin</creator><creator>Napieczynska, Hanna</creator><creator>Heuser, Arnd</creator><creator>Eichhorst, Jenny</creator><creator>Lehmann, Martin</creator><creator>Miller, Duncan C.</creator><creator>Diecke, Sebastian</creator><creator>Qadri, Fatimunnisa</creator><creator>Popova, Elena</creator><creator>Langanki, Reika</creator><creator>Movsesian, Matthew A.</creator><creator>Herberg, Friedrich W.</creator><creator>Forslund, Sofia K.</creator><creator>Müller, Dominik N.</creator><creator>Borodina, Tatiana</creator><creator>Maass, Philipp G.</creator><creator>Bähring, Sylvia</creator><creator>Hübner, Norbert</creator><creator>Bader, Michael</creator><creator>Klussmann, Enno</creator><general>Lippincott Williams &amp; Wilkins</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6851-9162</orcidid><orcidid>https://orcid.org/0000-0001-7117-7653</orcidid><orcidid>https://orcid.org/0000-0002-4957-3307</orcidid><orcidid>https://orcid.org/0000-0002-2041-2921</orcidid><orcidid>https://orcid.org/0000-0002-1263-2078</orcidid><orcidid>https://orcid.org/0000-0001-5903-8343</orcidid><orcidid>https://orcid.org/0000-0001-9852-677X</orcidid><orcidid>https://orcid.org/0000-0003-1888-5575</orcidid><orcidid>https://orcid.org/0000-0003-3650-5644</orcidid><orcidid>https://orcid.org/0000-0001-7384-3429</orcidid><orcidid>https://orcid.org/0000-0002-9263-8532</orcidid><orcidid>https://orcid.org/0000-0003-4004-5003</orcidid><orcidid>https://orcid.org/0000-0003-3394-0667</orcidid><orcidid>https://orcid.org/0000-0001-8734-9755</orcidid><orcidid>https://orcid.org/0000-0002-5156-7184</orcidid></search><sort><creationdate>20221206</creationdate><title>Mutant Phosphodiesterase 3A Protects From Hypertension-Induced Cardiac Damage</title><author>Ercu, Maria ; Mücke, Michael B. ; Pallien, Tamara ; Markó, Lajos ; Sholokh, Anastasiia ; Schächterle, Carolin ; Aydin, Atakan ; Kidd, Alexa ; Walter, Stephan ; Esmati, Yasmin ; McMurray, Brandon J. ; Lato, Daniella F. ; Yumi Sunaga-Franze, Daniele ; Dierks, Philip H. ; Flores, Barbara Isabel Montesinos ; Walker-Gray, Ryan ; Gong, Maolian ; Merticariu, Claudia ; Zühlke, Kerstin ; Russwurm, Michael ; Liu, Tiannan ; Batolomaeus, Theda U.P. ; Pautz, Sabine ; Schelenz, Stefanie ; Taube, Martin ; Napieczynska, Hanna ; Heuser, Arnd ; Eichhorst, Jenny ; Lehmann, Martin ; Miller, Duncan C. ; Diecke, Sebastian ; Qadri, Fatimunnisa ; Popova, Elena ; Langanki, Reika ; Movsesian, Matthew A. ; Herberg, Friedrich W. ; Forslund, Sofia K. ; Müller, Dominik N. ; Borodina, Tatiana ; Maass, Philipp G. ; Bähring, Sylvia ; Hübner, Norbert ; Bader, Michael ; Klussmann, Enno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4135-11d34ca12f0614bdae6a893c8639a2de665506baf75c84d2988b074fe199ed343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Cardiomegaly</topic><topic>Cyclic Nucleotide Phosphodiesterases, Type 3 - genetics</topic><topic>Cyclic Nucleotide Phosphodiesterases, Type 3 - metabolism</topic><topic>Heart Failure</topic><topic>Humans</topic><topic>Hypertension - complications</topic><topic>Hypertension - genetics</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Rats</topic><topic>RNA</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ercu, Maria</creatorcontrib><creatorcontrib>Mücke, Michael B.</creatorcontrib><creatorcontrib>Pallien, Tamara</creatorcontrib><creatorcontrib>Markó, Lajos</creatorcontrib><creatorcontrib>Sholokh, Anastasiia</creatorcontrib><creatorcontrib>Schächterle, Carolin</creatorcontrib><creatorcontrib>Aydin, Atakan</creatorcontrib><creatorcontrib>Kidd, Alexa</creatorcontrib><creatorcontrib>Walter, Stephan</creatorcontrib><creatorcontrib>Esmati, Yasmin</creatorcontrib><creatorcontrib>McMurray, Brandon J.</creatorcontrib><creatorcontrib>Lato, Daniella F.</creatorcontrib><creatorcontrib>Yumi Sunaga-Franze, Daniele</creatorcontrib><creatorcontrib>Dierks, Philip H.</creatorcontrib><creatorcontrib>Flores, Barbara Isabel Montesinos</creatorcontrib><creatorcontrib>Walker-Gray, Ryan</creatorcontrib><creatorcontrib>Gong, Maolian</creatorcontrib><creatorcontrib>Merticariu, Claudia</creatorcontrib><creatorcontrib>Zühlke, Kerstin</creatorcontrib><creatorcontrib>Russwurm, Michael</creatorcontrib><creatorcontrib>Liu, Tiannan</creatorcontrib><creatorcontrib>Batolomaeus, Theda U.P.</creatorcontrib><creatorcontrib>Pautz, Sabine</creatorcontrib><creatorcontrib>Schelenz, Stefanie</creatorcontrib><creatorcontrib>Taube, Martin</creatorcontrib><creatorcontrib>Napieczynska, Hanna</creatorcontrib><creatorcontrib>Heuser, Arnd</creatorcontrib><creatorcontrib>Eichhorst, Jenny</creatorcontrib><creatorcontrib>Lehmann, Martin</creatorcontrib><creatorcontrib>Miller, Duncan C.</creatorcontrib><creatorcontrib>Diecke, Sebastian</creatorcontrib><creatorcontrib>Qadri, Fatimunnisa</creatorcontrib><creatorcontrib>Popova, Elena</creatorcontrib><creatorcontrib>Langanki, Reika</creatorcontrib><creatorcontrib>Movsesian, Matthew A.</creatorcontrib><creatorcontrib>Herberg, Friedrich W.</creatorcontrib><creatorcontrib>Forslund, Sofia K.</creatorcontrib><creatorcontrib>Müller, Dominik N.</creatorcontrib><creatorcontrib>Borodina, Tatiana</creatorcontrib><creatorcontrib>Maass, Philipp G.</creatorcontrib><creatorcontrib>Bähring, Sylvia</creatorcontrib><creatorcontrib>Hübner, Norbert</creatorcontrib><creatorcontrib>Bader, Michael</creatorcontrib><creatorcontrib>Klussmann, Enno</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ercu, Maria</au><au>Mücke, Michael B.</au><au>Pallien, Tamara</au><au>Markó, Lajos</au><au>Sholokh, Anastasiia</au><au>Schächterle, Carolin</au><au>Aydin, Atakan</au><au>Kidd, Alexa</au><au>Walter, Stephan</au><au>Esmati, Yasmin</au><au>McMurray, Brandon J.</au><au>Lato, Daniella F.</au><au>Yumi Sunaga-Franze, Daniele</au><au>Dierks, Philip H.</au><au>Flores, Barbara Isabel Montesinos</au><au>Walker-Gray, Ryan</au><au>Gong, Maolian</au><au>Merticariu, Claudia</au><au>Zühlke, Kerstin</au><au>Russwurm, Michael</au><au>Liu, Tiannan</au><au>Batolomaeus, Theda U.P.</au><au>Pautz, Sabine</au><au>Schelenz, Stefanie</au><au>Taube, Martin</au><au>Napieczynska, Hanna</au><au>Heuser, Arnd</au><au>Eichhorst, Jenny</au><au>Lehmann, Martin</au><au>Miller, Duncan C.</au><au>Diecke, Sebastian</au><au>Qadri, Fatimunnisa</au><au>Popova, Elena</au><au>Langanki, Reika</au><au>Movsesian, Matthew A.</au><au>Herberg, Friedrich W.</au><au>Forslund, Sofia K.</au><au>Müller, Dominik N.</au><au>Borodina, Tatiana</au><au>Maass, Philipp G.</au><au>Bähring, Sylvia</au><au>Hübner, Norbert</au><au>Bader, Michael</au><au>Klussmann, Enno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutant Phosphodiesterase 3A Protects From Hypertension-Induced Cardiac Damage</atitle><jtitle>Circulation (New York, N.Y.)</jtitle><addtitle>Circulation</addtitle><date>2022-12-06</date><risdate>2022</risdate><volume>146</volume><issue>23</issue><spage>1758</spage><epage>1778</epage><pages>1758-1778</pages><issn>0009-7322</issn><eissn>1524-4539</eissn><abstract>Phosphodiesterase 3A ( ) gain-of-function mutations cause hypertension with brachydactyly (HTNB) and lead to stroke. Increased peripheral vascular resistance, rather than salt retention, is responsible. It is surprising that the few patients with HTNB examined so far did not develop cardiac hypertrophy or heart failure. We hypothesized that, in the heart, mutations could be protective. We studied new patients. CRISPR-Cas9-engineered rat HTNB models were phenotyped by telemetric blood pressure measurements, echocardiography, microcomputed tomography, RNA-sequencing, and single nuclei RNA-sequencing. Human induced pluripotent stem cells carrying mutations were established, differentiated to cardiomyocytes, and analyzed by Ca imaging. We used Förster resonance energy transfer and biochemical assays. We identified a new mutation in a family with HTNB. It maps to exon 13 encoding the enzyme's catalytic domain. All hitherto identified HTNB mutations cluster in exon 4 encoding a region N-terminally from the catalytic domain of the enzyme. The mutations were recapitulated in rat models. Both exon 4 and 13 mutations led to aberrant phosphorylation, hyperactivity, and increased PDE3A enzyme self-assembly. The left ventricles of our patients with HTNB and the rat models were normal despite preexisting hypertension. A catecholamine challenge elicited cardiac hypertrophy in HTNB rats only to the level of wild-type rats and improved the contractility of the mutant hearts, compared with wild-type rats. The β-adrenergic system, phosphodiesterase activity, and cAMP levels in the mutant hearts resembled wild-type hearts, whereas phospholamban phosphorylation was decreased in the mutants. In our induced pluripotent stem cell cardiomyocyte models, the mutations caused adaptive changes of Ca cycling. RNA-sequencing and single nuclei RNA-sequencing identified differences in mRNA expression between wild-type and mutants, affecting, among others, metabolism and protein folding. Although in vascular smooth muscle, mutations cause hypertension, they confer protection against hypertension-induced cardiac damage in hearts. Nonselective PDE3A inhibition is a final, short-term option in heart failure treatment to increase cardiac cAMP and improve contractility. Our data argue that mimicking the effect of mutations in the heart rather than nonselective PDE3 inhibition is cardioprotective in the long term. Our findings could facilitate the search for new treatments to prevent hypertension-induced cardiac damage.</abstract><cop>United States</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>36259389</pmid><doi>10.1161/CIRCULATIONAHA.122.060210</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-6851-9162</orcidid><orcidid>https://orcid.org/0000-0001-7117-7653</orcidid><orcidid>https://orcid.org/0000-0002-4957-3307</orcidid><orcidid>https://orcid.org/0000-0002-2041-2921</orcidid><orcidid>https://orcid.org/0000-0002-1263-2078</orcidid><orcidid>https://orcid.org/0000-0001-5903-8343</orcidid><orcidid>https://orcid.org/0000-0001-9852-677X</orcidid><orcidid>https://orcid.org/0000-0003-1888-5575</orcidid><orcidid>https://orcid.org/0000-0003-3650-5644</orcidid><orcidid>https://orcid.org/0000-0001-7384-3429</orcidid><orcidid>https://orcid.org/0000-0002-9263-8532</orcidid><orcidid>https://orcid.org/0000-0003-4004-5003</orcidid><orcidid>https://orcid.org/0000-0003-3394-0667</orcidid><orcidid>https://orcid.org/0000-0001-8734-9755</orcidid><orcidid>https://orcid.org/0000-0002-5156-7184</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7322
ispartof Circulation (New York, N.Y.), 2022-12, Vol.146 (23), p.1758-1778
issn 0009-7322
1524-4539
language eng
recordid cdi_proquest_miscellaneous_2726409966
source MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete
subjects Animals
Cardiomegaly
Cyclic Nucleotide Phosphodiesterases, Type 3 - genetics
Cyclic Nucleotide Phosphodiesterases, Type 3 - metabolism
Heart Failure
Humans
Hypertension - complications
Hypertension - genetics
Induced Pluripotent Stem Cells - metabolism
Myocytes, Cardiac - metabolism
Rats
RNA
X-Ray Microtomography
title Mutant Phosphodiesterase 3A Protects From Hypertension-Induced Cardiac Damage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutant%20Phosphodiesterase%203A%20Protects%20From%20Hypertension-Induced%20Cardiac%20Damage&rft.jtitle=Circulation%20(New%20York,%20N.Y.)&rft.au=Ercu,%20Maria&rft.date=2022-12-06&rft.volume=146&rft.issue=23&rft.spage=1758&rft.epage=1778&rft.pages=1758-1778&rft.issn=0009-7322&rft.eissn=1524-4539&rft_id=info:doi/10.1161/CIRCULATIONAHA.122.060210&rft_dat=%3Cproquest_cross%3E2726409966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726409966&rft_id=info:pmid/36259389&rfr_iscdi=true