Metabology: Analysis of metabolomics data using community ecology tools

Several areas such as microbiology, botany, and medicine use genetic information and computational tools to organize, classify and analyze data. However, only recently has it been possible to obtain the chemical ontology of metabolites computationally. The systematic classification of metabolites in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytica chimica acta 2022-11, Vol.1232, p.340469-340469, Article 340469
Hauptverfasser: Passos Mansoldo, Felipe Raposo, Garrett, Rafael, da Silva Cardoso, Veronica, Alves, Marina Amaral, Vermelho, Alane Beatriz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 340469
container_issue
container_start_page 340469
container_title Analytica chimica acta
container_volume 1232
creator Passos Mansoldo, Felipe Raposo
Garrett, Rafael
da Silva Cardoso, Veronica
Alves, Marina Amaral
Vermelho, Alane Beatriz
description Several areas such as microbiology, botany, and medicine use genetic information and computational tools to organize, classify and analyze data. However, only recently has it been possible to obtain the chemical ontology of metabolites computationally. The systematic classification of metabolites into classes opens the way for adapting methods that previously used genetic taxonomy to now accept chemical ontology. Community ecology tools are ideal for this adaptation as they have mature methods and enable exploratory data analysis with established statistical tools. This study introduces the Metabology approach, which transforms metabolites into an ecosystem where the metabolites (species) are related by chemical ontology. In the present work, we demonstrate the applicability of this new approach using publicly available data from a metabolomics study of human plasma that searched for prognostic markers of COVID-19, and in an untargeted metabolomics study carried out by our laboratory using Lasiodiplodia theobromae fungal pathogen supernatants. [Display omitted] •Metabology converts metabolomics data into an ecosystem of entities related by chemical ontology.•This ecosystem can be analyzed as a biome of metabolites through community ecology tools.•The approach allows the analysis of the correlation between chemical families and metadata.•Metabology showed a significant change in alpha diversity of metabolites from L. theobromae.•Metabology revealed chemical families related to COVID-19 disease severity.
doi_str_mv 10.1016/j.aca.2022.340469
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2726409237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267022010406</els_id><sourcerecordid>2726409237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-c20b49f77bf66bc207b852c24fc5447cd229a26437ef5e946a7e72431a6a50073</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEuXjB7B5ZEmwz47dwFRVUJCKWGC2HOdSuUriEidI-fekpDPT6T29z0n3EHLHWcoZVw_71DqbAgNIhWRS5WdkwZdaJFKAPCcLxphIQGl2Sa5i3E8ROJMLsnnH3hahDrvxka5aW4_RRxoq2pz2jXeRlra3dIi-3VEXmmZofT9SdH8Y7UOo4w25qGwd8fY0r8nXy_Pn-jXZfmze1qtt4oRgfeKAFTKvtC4qpYop6WKZgQNZuUxK7UqA3IKSQmOVYS6V1ahBCm6VzRjT4prcz3cPXfgeMPam8dFhXdsWwxAN6IlmOYhjlc9V14UYO6zMofON7UbDmTlKM3szSTNHaWaWNjFPM4PTDz8eOxOdx9Zh6Tt0vSmD_4f-BcQ2c9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726409237</pqid></control><display><type>article</type><title>Metabology: Analysis of metabolomics data using community ecology tools</title><source>Elsevier ScienceDirect Journals</source><creator>Passos Mansoldo, Felipe Raposo ; Garrett, Rafael ; da Silva Cardoso, Veronica ; Alves, Marina Amaral ; Vermelho, Alane Beatriz</creator><creatorcontrib>Passos Mansoldo, Felipe Raposo ; Garrett, Rafael ; da Silva Cardoso, Veronica ; Alves, Marina Amaral ; Vermelho, Alane Beatriz</creatorcontrib><description>Several areas such as microbiology, botany, and medicine use genetic information and computational tools to organize, classify and analyze data. However, only recently has it been possible to obtain the chemical ontology of metabolites computationally. The systematic classification of metabolites into classes opens the way for adapting methods that previously used genetic taxonomy to now accept chemical ontology. Community ecology tools are ideal for this adaptation as they have mature methods and enable exploratory data analysis with established statistical tools. This study introduces the Metabology approach, which transforms metabolites into an ecosystem where the metabolites (species) are related by chemical ontology. In the present work, we demonstrate the applicability of this new approach using publicly available data from a metabolomics study of human plasma that searched for prognostic markers of COVID-19, and in an untargeted metabolomics study carried out by our laboratory using Lasiodiplodia theobromae fungal pathogen supernatants. [Display omitted] •Metabology converts metabolomics data into an ecosystem of entities related by chemical ontology.•This ecosystem can be analyzed as a biome of metabolites through community ecology tools.•The approach allows the analysis of the correlation between chemical families and metadata.•Metabology showed a significant change in alpha diversity of metabolites from L. theobromae.•Metabology revealed chemical families related to COVID-19 disease severity.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2022.340469</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chemical ontology ; Data integration ; Metabology ; Metabolomics ; Structure-based classification</subject><ispartof>Analytica chimica acta, 2022-11, Vol.1232, p.340469-340469, Article 340469</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-c20b49f77bf66bc207b852c24fc5447cd229a26437ef5e946a7e72431a6a50073</citedby><cites>FETCH-LOGICAL-c330t-c20b49f77bf66bc207b852c24fc5447cd229a26437ef5e946a7e72431a6a50073</cites><orcidid>0000-0002-5823-311X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aca.2022.340469$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Passos Mansoldo, Felipe Raposo</creatorcontrib><creatorcontrib>Garrett, Rafael</creatorcontrib><creatorcontrib>da Silva Cardoso, Veronica</creatorcontrib><creatorcontrib>Alves, Marina Amaral</creatorcontrib><creatorcontrib>Vermelho, Alane Beatriz</creatorcontrib><title>Metabology: Analysis of metabolomics data using community ecology tools</title><title>Analytica chimica acta</title><description>Several areas such as microbiology, botany, and medicine use genetic information and computational tools to organize, classify and analyze data. However, only recently has it been possible to obtain the chemical ontology of metabolites computationally. The systematic classification of metabolites into classes opens the way for adapting methods that previously used genetic taxonomy to now accept chemical ontology. Community ecology tools are ideal for this adaptation as they have mature methods and enable exploratory data analysis with established statistical tools. This study introduces the Metabology approach, which transforms metabolites into an ecosystem where the metabolites (species) are related by chemical ontology. In the present work, we demonstrate the applicability of this new approach using publicly available data from a metabolomics study of human plasma that searched for prognostic markers of COVID-19, and in an untargeted metabolomics study carried out by our laboratory using Lasiodiplodia theobromae fungal pathogen supernatants. [Display omitted] •Metabology converts metabolomics data into an ecosystem of entities related by chemical ontology.•This ecosystem can be analyzed as a biome of metabolites through community ecology tools.•The approach allows the analysis of the correlation between chemical families and metadata.•Metabology showed a significant change in alpha diversity of metabolites from L. theobromae.•Metabology revealed chemical families related to COVID-19 disease severity.</description><subject>Chemical ontology</subject><subject>Data integration</subject><subject>Metabology</subject><subject>Metabolomics</subject><subject>Structure-based classification</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEuXjB7B5ZEmwz47dwFRVUJCKWGC2HOdSuUriEidI-fekpDPT6T29z0n3EHLHWcoZVw_71DqbAgNIhWRS5WdkwZdaJFKAPCcLxphIQGl2Sa5i3E8ROJMLsnnH3hahDrvxka5aW4_RRxoq2pz2jXeRlra3dIi-3VEXmmZofT9SdH8Y7UOo4w25qGwd8fY0r8nXy_Pn-jXZfmze1qtt4oRgfeKAFTKvtC4qpYop6WKZgQNZuUxK7UqA3IKSQmOVYS6V1ahBCm6VzRjT4prcz3cPXfgeMPam8dFhXdsWwxAN6IlmOYhjlc9V14UYO6zMofON7UbDmTlKM3szSTNHaWaWNjFPM4PTDz8eOxOdx9Zh6Tt0vSmD_4f-BcQ2c9w</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Passos Mansoldo, Felipe Raposo</creator><creator>Garrett, Rafael</creator><creator>da Silva Cardoso, Veronica</creator><creator>Alves, Marina Amaral</creator><creator>Vermelho, Alane Beatriz</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5823-311X</orcidid></search><sort><creationdate>20221101</creationdate><title>Metabology: Analysis of metabolomics data using community ecology tools</title><author>Passos Mansoldo, Felipe Raposo ; Garrett, Rafael ; da Silva Cardoso, Veronica ; Alves, Marina Amaral ; Vermelho, Alane Beatriz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-c20b49f77bf66bc207b852c24fc5447cd229a26437ef5e946a7e72431a6a50073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical ontology</topic><topic>Data integration</topic><topic>Metabology</topic><topic>Metabolomics</topic><topic>Structure-based classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Passos Mansoldo, Felipe Raposo</creatorcontrib><creatorcontrib>Garrett, Rafael</creatorcontrib><creatorcontrib>da Silva Cardoso, Veronica</creatorcontrib><creatorcontrib>Alves, Marina Amaral</creatorcontrib><creatorcontrib>Vermelho, Alane Beatriz</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Passos Mansoldo, Felipe Raposo</au><au>Garrett, Rafael</au><au>da Silva Cardoso, Veronica</au><au>Alves, Marina Amaral</au><au>Vermelho, Alane Beatriz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabology: Analysis of metabolomics data using community ecology tools</atitle><jtitle>Analytica chimica acta</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>1232</volume><spage>340469</spage><epage>340469</epage><pages>340469-340469</pages><artnum>340469</artnum><issn>0003-2670</issn><eissn>1873-4324</eissn><abstract>Several areas such as microbiology, botany, and medicine use genetic information and computational tools to organize, classify and analyze data. However, only recently has it been possible to obtain the chemical ontology of metabolites computationally. The systematic classification of metabolites into classes opens the way for adapting methods that previously used genetic taxonomy to now accept chemical ontology. Community ecology tools are ideal for this adaptation as they have mature methods and enable exploratory data analysis with established statistical tools. This study introduces the Metabology approach, which transforms metabolites into an ecosystem where the metabolites (species) are related by chemical ontology. In the present work, we demonstrate the applicability of this new approach using publicly available data from a metabolomics study of human plasma that searched for prognostic markers of COVID-19, and in an untargeted metabolomics study carried out by our laboratory using Lasiodiplodia theobromae fungal pathogen supernatants. [Display omitted] •Metabology converts metabolomics data into an ecosystem of entities related by chemical ontology.•This ecosystem can be analyzed as a biome of metabolites through community ecology tools.•The approach allows the analysis of the correlation between chemical families and metadata.•Metabology showed a significant change in alpha diversity of metabolites from L. theobromae.•Metabology revealed chemical families related to COVID-19 disease severity.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.aca.2022.340469</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5823-311X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2670
ispartof Analytica chimica acta, 2022-11, Vol.1232, p.340469-340469, Article 340469
issn 0003-2670
1873-4324
language eng
recordid cdi_proquest_miscellaneous_2726409237
source Elsevier ScienceDirect Journals
subjects Chemical ontology
Data integration
Metabology
Metabolomics
Structure-based classification
title Metabology: Analysis of metabolomics data using community ecology tools
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabology:%20Analysis%20of%20metabolomics%20data%20using%20community%20ecology%20tools&rft.jtitle=Analytica%20chimica%20acta&rft.au=Passos%20Mansoldo,%20Felipe%20Raposo&rft.date=2022-11-01&rft.volume=1232&rft.spage=340469&rft.epage=340469&rft.pages=340469-340469&rft.artnum=340469&rft.issn=0003-2670&rft.eissn=1873-4324&rft_id=info:doi/10.1016/j.aca.2022.340469&rft_dat=%3Cproquest_cross%3E2726409237%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726409237&rft_id=info:pmid/&rft_els_id=S0003267022010406&rfr_iscdi=true