Predictive Theoretical Model for the Selective Electroreduction of Nitrate to Ammonia

The electrochemical reduction of nitrate (eNO3RR) emerges as a promising route for decentralized ammonia synthesis. However, the competitive production of nitrite at low overpotentials is a challenging issue. Herein, using the combination of density functional theory and microkinetic modeling, we sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2022-10, Vol.13 (42), p.9919-9927
Hauptverfasser: Mou, Tong, Wang, Yuting, Deák, Peter, Li, Huan, Long, Jun, Fu, Xiaoyan, Zhang, Bin, Frauenheim, Thomas, Xiao, Jianping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9927
container_issue 42
container_start_page 9919
container_title The journal of physical chemistry letters
container_volume 13
creator Mou, Tong
Wang, Yuting
Deák, Peter
Li, Huan
Long, Jun
Fu, Xiaoyan
Zhang, Bin
Frauenheim, Thomas
Xiao, Jianping
description The electrochemical reduction of nitrate (eNO3RR) emerges as a promising route for decentralized ammonia synthesis. However, the competitive production of nitrite at low overpotentials is a challenging issue. Herein, using the combination of density functional theory and microkinetic modeling, we show that the selectivity for NH3 surpasses that of NO2 – at −0.66 VRHE, which nicely reproduced the experimental value on titania. NH2OH* → NH2* is the kinetically controlling step at a low overpotential for NH3 generation, while NO2* → HNO2 has the highest barrier to producing nitrite. Based on these mechanistic insights, we suggest that ΔG 1 (NH2OH* → NH2*) – ΔG 2 (NO2* → HNO2) can serve as a descriptor to predict the S­(NO2 –)/S­(NH3) crossover potential. Such a model is verified by the experimental results on Ag, Cu, TiO2–x , Fe3O4, and Fe-MoS2 and can be extended to the Au catalyst. Thus, this work sheds light on the rational design of catalysts that are simultaneously energy-efficient and selective to NH3.
doi_str_mv 10.1021/acs.jpclett.2c02452
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2726408729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726408729</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-af25d0df4a7b51cab5d6f3693b0604f1baa4ef1026bde697d50791263ca9bf443</originalsourceid><addsrcrecordid>eNp9kEtrwzAQhEVpoenjF_SiYy9OJFmW42MI6QPSBzQ5C1laEQfbSiW50H9fpc6hp5522P1mYQahO0qmlDA6UzpM9wfdQoxTpgnjBTtDE1rxeVbSeXH-R1-iqxD2hIiKzMsJ2r57MI2OzRfgzQ6ch9ho1eIXZ6DF1nkcd4A_oIWRWR2FT5gZ0sL12Fn82kSvIuDo8KLrXN-oG3RhVRvg9jSv0fZhtVk-Zeu3x-flYp2pnLGYKcsKQ4zlqqwLqlVdGGFzUeU1EYRbWivFwaaEojYgqtIUpKwoE7lWVW05z6_R_fj34N3nACHKrgka2lb14IYgWckETzlZldB8RLV3IXiw8uCbTvlvSYk8lihTifJUojyVmFyz0fV7dIPvU5x_HT9yX3m6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726408729</pqid></control><display><type>article</type><title>Predictive Theoretical Model for the Selective Electroreduction of Nitrate to Ammonia</title><source>American Chemical Society Journals</source><creator>Mou, Tong ; Wang, Yuting ; Deák, Peter ; Li, Huan ; Long, Jun ; Fu, Xiaoyan ; Zhang, Bin ; Frauenheim, Thomas ; Xiao, Jianping</creator><creatorcontrib>Mou, Tong ; Wang, Yuting ; Deák, Peter ; Li, Huan ; Long, Jun ; Fu, Xiaoyan ; Zhang, Bin ; Frauenheim, Thomas ; Xiao, Jianping</creatorcontrib><description>The electrochemical reduction of nitrate (eNO3RR) emerges as a promising route for decentralized ammonia synthesis. However, the competitive production of nitrite at low overpotentials is a challenging issue. Herein, using the combination of density functional theory and microkinetic modeling, we show that the selectivity for NH3 surpasses that of NO2 – at −0.66 VRHE, which nicely reproduced the experimental value on titania. NH2OH* → NH2* is the kinetically controlling step at a low overpotential for NH3 generation, while NO2* → HNO2 has the highest barrier to producing nitrite. Based on these mechanistic insights, we suggest that ΔG 1 (NH2OH* → NH2*) – ΔG 2 (NO2* → HNO2) can serve as a descriptor to predict the S­(NO2 –)/S­(NH3) crossover potential. Such a model is verified by the experimental results on Ag, Cu, TiO2–x , Fe3O4, and Fe-MoS2 and can be extended to the Au catalyst. Thus, this work sheds light on the rational design of catalysts that are simultaneously energy-efficient and selective to NH3.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.2c02452</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><ispartof>The journal of physical chemistry letters, 2022-10, Vol.13 (42), p.9919-9927</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-af25d0df4a7b51cab5d6f3693b0604f1baa4ef1026bde697d50791263ca9bf443</citedby><cites>FETCH-LOGICAL-a322t-af25d0df4a7b51cab5d6f3693b0604f1baa4ef1026bde697d50791263ca9bf443</cites><orcidid>0000-0003-1840-0515 ; 0000-0003-1779-6140 ; 0000-0003-0542-1819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.2c02452$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.2c02452$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Mou, Tong</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Deák, Peter</creatorcontrib><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Long, Jun</creatorcontrib><creatorcontrib>Fu, Xiaoyan</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Frauenheim, Thomas</creatorcontrib><creatorcontrib>Xiao, Jianping</creatorcontrib><title>Predictive Theoretical Model for the Selective Electroreduction of Nitrate to Ammonia</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>The electrochemical reduction of nitrate (eNO3RR) emerges as a promising route for decentralized ammonia synthesis. However, the competitive production of nitrite at low overpotentials is a challenging issue. Herein, using the combination of density functional theory and microkinetic modeling, we show that the selectivity for NH3 surpasses that of NO2 – at −0.66 VRHE, which nicely reproduced the experimental value on titania. NH2OH* → NH2* is the kinetically controlling step at a low overpotential for NH3 generation, while NO2* → HNO2 has the highest barrier to producing nitrite. Based on these mechanistic insights, we suggest that ΔG 1 (NH2OH* → NH2*) – ΔG 2 (NO2* → HNO2) can serve as a descriptor to predict the S­(NO2 –)/S­(NH3) crossover potential. Such a model is verified by the experimental results on Ag, Cu, TiO2–x , Fe3O4, and Fe-MoS2 and can be extended to the Au catalyst. Thus, this work sheds light on the rational design of catalysts that are simultaneously energy-efficient and selective to NH3.</description><subject>Physical Insights into Chemistry, Catalysis, and Interfaces</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrwzAQhEVpoenjF_SiYy9OJFmW42MI6QPSBzQ5C1laEQfbSiW50H9fpc6hp5522P1mYQahO0qmlDA6UzpM9wfdQoxTpgnjBTtDE1rxeVbSeXH-R1-iqxD2hIiKzMsJ2r57MI2OzRfgzQ6ch9ho1eIXZ6DF1nkcd4A_oIWRWR2FT5gZ0sL12Fn82kSvIuDo8KLrXN-oG3RhVRvg9jSv0fZhtVk-Zeu3x-flYp2pnLGYKcsKQ4zlqqwLqlVdGGFzUeU1EYRbWivFwaaEojYgqtIUpKwoE7lWVW05z6_R_fj34N3nACHKrgka2lb14IYgWckETzlZldB8RLV3IXiw8uCbTvlvSYk8lihTifJUojyVmFyz0fV7dIPvU5x_HT9yX3m6</recordid><startdate>20221027</startdate><enddate>20221027</enddate><creator>Mou, Tong</creator><creator>Wang, Yuting</creator><creator>Deák, Peter</creator><creator>Li, Huan</creator><creator>Long, Jun</creator><creator>Fu, Xiaoyan</creator><creator>Zhang, Bin</creator><creator>Frauenheim, Thomas</creator><creator>Xiao, Jianping</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1840-0515</orcidid><orcidid>https://orcid.org/0000-0003-1779-6140</orcidid><orcidid>https://orcid.org/0000-0003-0542-1819</orcidid></search><sort><creationdate>20221027</creationdate><title>Predictive Theoretical Model for the Selective Electroreduction of Nitrate to Ammonia</title><author>Mou, Tong ; Wang, Yuting ; Deák, Peter ; Li, Huan ; Long, Jun ; Fu, Xiaoyan ; Zhang, Bin ; Frauenheim, Thomas ; Xiao, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-af25d0df4a7b51cab5d6f3693b0604f1baa4ef1026bde697d50791263ca9bf443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Physical Insights into Chemistry, Catalysis, and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mou, Tong</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Deák, Peter</creatorcontrib><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Long, Jun</creatorcontrib><creatorcontrib>Fu, Xiaoyan</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Frauenheim, Thomas</creatorcontrib><creatorcontrib>Xiao, Jianping</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mou, Tong</au><au>Wang, Yuting</au><au>Deák, Peter</au><au>Li, Huan</au><au>Long, Jun</au><au>Fu, Xiaoyan</au><au>Zhang, Bin</au><au>Frauenheim, Thomas</au><au>Xiao, Jianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Theoretical Model for the Selective Electroreduction of Nitrate to Ammonia</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2022-10-27</date><risdate>2022</risdate><volume>13</volume><issue>42</issue><spage>9919</spage><epage>9927</epage><pages>9919-9927</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The electrochemical reduction of nitrate (eNO3RR) emerges as a promising route for decentralized ammonia synthesis. However, the competitive production of nitrite at low overpotentials is a challenging issue. Herein, using the combination of density functional theory and microkinetic modeling, we show that the selectivity for NH3 surpasses that of NO2 – at −0.66 VRHE, which nicely reproduced the experimental value on titania. NH2OH* → NH2* is the kinetically controlling step at a low overpotential for NH3 generation, while NO2* → HNO2 has the highest barrier to producing nitrite. Based on these mechanistic insights, we suggest that ΔG 1 (NH2OH* → NH2*) – ΔG 2 (NO2* → HNO2) can serve as a descriptor to predict the S­(NO2 –)/S­(NH3) crossover potential. Such a model is verified by the experimental results on Ag, Cu, TiO2–x , Fe3O4, and Fe-MoS2 and can be extended to the Au catalyst. Thus, this work sheds light on the rational design of catalysts that are simultaneously energy-efficient and selective to NH3.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.2c02452</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1840-0515</orcidid><orcidid>https://orcid.org/0000-0003-1779-6140</orcidid><orcidid>https://orcid.org/0000-0003-0542-1819</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2022-10, Vol.13 (42), p.9919-9927
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2726408729
source American Chemical Society Journals
subjects Physical Insights into Chemistry, Catalysis, and Interfaces
title Predictive Theoretical Model for the Selective Electroreduction of Nitrate to Ammonia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Theoretical%20Model%20for%20the%20Selective%20Electroreduction%20of%20Nitrate%20to%20Ammonia&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Mou,%20Tong&rft.date=2022-10-27&rft.volume=13&rft.issue=42&rft.spage=9919&rft.epage=9927&rft.pages=9919-9927&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.2c02452&rft_dat=%3Cproquest_cross%3E2726408729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726408729&rft_id=info:pmid/&rfr_iscdi=true