Using multiple images and contours for deformable 3D–2D registration of a preoperative CT in laparoscopic liver surgery

Purpose Laparoscopic liver resection is a challenging procedure because of the difficulty to localise inner structures such as tumours and vessels. Augmented reality overcomes this problem by overlaying preoperative 3D models on the laparoscopic views. It requires deformable registration of the preo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2022-12, Vol.17 (12), p.2211-2219
Hauptverfasser: Espinel, Yamid, Calvet, Lilian, Botros, Karim, Buc, Emmanuel, Tilmant, Christophe, Bartoli, Adrien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2219
container_issue 12
container_start_page 2211
container_title International journal for computer assisted radiology and surgery
container_volume 17
creator Espinel, Yamid
Calvet, Lilian
Botros, Karim
Buc, Emmanuel
Tilmant, Christophe
Bartoli, Adrien
description Purpose Laparoscopic liver resection is a challenging procedure because of the difficulty to localise inner structures such as tumours and vessels. Augmented reality overcomes this problem by overlaying preoperative 3D models on the laparoscopic views. It requires deformable registration of the preoperative 3D models to the laparoscopic views, which is a challenging task due to the liver flexibility and partial visibility. Methods We propose several multi-view registration methods exploiting information from multiple views simultaneously in order to improve registration accuracy. They are designed to work on two scenarios: on rigidly related views and on non-rigidly related views. These methods exploit the liver’s anatomical landmarks and texture information available in all the views to constrain registration. Results We evaluated the registration accuracy of our methods quantitatively on synthetic and phantom data, and qualitatively on patient data. We measured 3D target registration errors in mm for the whole liver for the quantitative case, and 2D reprojection errors in pixels for the qualitative case. Conclusion The proposed rigidly related multi-view methods improve registration accuracy compared to the baseline single-view method. They comply with the 1 cm oncologic resection margin advised for hepatocellular carcinoma interventions, depending on the available registration constraints. The non-rigidly related multi-view method does not provide a noticeable improvement. This means that using multiple views with the rigidity assumption achieves the best overall registration error.
doi_str_mv 10.1007/s11548-022-02774-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2725653964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725653964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-e6442d61db94577111d69c5641932499fec591015ccc615bc417bd7974ed283b3</originalsourceid><addsrcrecordid>eNp9kctKxDAUhoMoOF5ewFXAjZtqT5pLs5QZbzDgZmYd0jQtHTpNTVphdr6Db-iTmLGC4sJFLhy-_3DO_yN0Aek1pKm4CQCM5klKSDxC0AQO0AxyDgmnRB7--h-jkxA2aUqZyNgM7dah6Wq8Hduh6VuLm62ubcC6K7Fx3eBGH3DlPC5tvLe6iEi2-Hh7Jwvsbd2EweuhcR12Fda499b1dl95tXi-wk2HW91r74JxfWNwG-seh9HX1u_O0FGl22DPv99TtL6_W80fk-Xzw9P8dpkYkpMhsZxSUnIoCxlHFgBQcmkYpyAzQqWsrGESUmDGGA6sMBREUQopqC1JnhXZKbqa-vbevYw2DGrbBGPbVnfWjUERQRhnmeQ0opd_0E00oIvTRSpj0WGe7ykyUSYuFrytVO-jbX6nIFX7NNSUhoppqK80FERRNolChLu4_0_rf1SflQ2N6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735548684</pqid></control><display><type>article</type><title>Using multiple images and contours for deformable 3D–2D registration of a preoperative CT in laparoscopic liver surgery</title><source>SpringerLink Journals - AutoHoldings</source><creator>Espinel, Yamid ; Calvet, Lilian ; Botros, Karim ; Buc, Emmanuel ; Tilmant, Christophe ; Bartoli, Adrien</creator><creatorcontrib>Espinel, Yamid ; Calvet, Lilian ; Botros, Karim ; Buc, Emmanuel ; Tilmant, Christophe ; Bartoli, Adrien</creatorcontrib><description>Purpose Laparoscopic liver resection is a challenging procedure because of the difficulty to localise inner structures such as tumours and vessels. Augmented reality overcomes this problem by overlaying preoperative 3D models on the laparoscopic views. It requires deformable registration of the preoperative 3D models to the laparoscopic views, which is a challenging task due to the liver flexibility and partial visibility. Methods We propose several multi-view registration methods exploiting information from multiple views simultaneously in order to improve registration accuracy. They are designed to work on two scenarios: on rigidly related views and on non-rigidly related views. These methods exploit the liver’s anatomical landmarks and texture information available in all the views to constrain registration. Results We evaluated the registration accuracy of our methods quantitatively on synthetic and phantom data, and qualitatively on patient data. We measured 3D target registration errors in mm for the whole liver for the quantitative case, and 2D reprojection errors in pixels for the qualitative case. Conclusion The proposed rigidly related multi-view methods improve registration accuracy compared to the baseline single-view method. They comply with the 1 cm oncologic resection margin advised for hepatocellular carcinoma interventions, depending on the available registration constraints. The non-rigidly related multi-view method does not provide a noticeable improvement. This means that using multiple views with the rigidity assumption achieves the best overall registration error.</description><identifier>ISSN: 1861-6429</identifier><identifier>ISSN: 1861-6410</identifier><identifier>EISSN: 1861-6429</identifier><identifier>DOI: 10.1007/s11548-022-02774-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accuracy ; Augmented reality ; Computer Imaging ; Computer Science ; Deformation ; Errors ; Formability ; Health Informatics ; Imaging ; Laparoscopy ; Liver ; Medicine ; Medicine &amp; Public Health ; Original Article ; Pattern Recognition and Graphics ; Radiology ; Registration ; Surgery ; Three dimensional models ; Vision</subject><ispartof>International journal for computer assisted radiology and surgery, 2022-12, Vol.17 (12), p.2211-2219</ispartof><rights>CARS 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-e6442d61db94577111d69c5641932499fec591015ccc615bc417bd7974ed283b3</citedby><cites>FETCH-LOGICAL-c282t-e6442d61db94577111d69c5641932499fec591015ccc615bc417bd7974ed283b3</cites><orcidid>0000-0001-7637-0137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11548-022-02774-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11548-022-02774-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Espinel, Yamid</creatorcontrib><creatorcontrib>Calvet, Lilian</creatorcontrib><creatorcontrib>Botros, Karim</creatorcontrib><creatorcontrib>Buc, Emmanuel</creatorcontrib><creatorcontrib>Tilmant, Christophe</creatorcontrib><creatorcontrib>Bartoli, Adrien</creatorcontrib><title>Using multiple images and contours for deformable 3D–2D registration of a preoperative CT in laparoscopic liver surgery</title><title>International journal for computer assisted radiology and surgery</title><addtitle>Int J CARS</addtitle><description>Purpose Laparoscopic liver resection is a challenging procedure because of the difficulty to localise inner structures such as tumours and vessels. Augmented reality overcomes this problem by overlaying preoperative 3D models on the laparoscopic views. It requires deformable registration of the preoperative 3D models to the laparoscopic views, which is a challenging task due to the liver flexibility and partial visibility. Methods We propose several multi-view registration methods exploiting information from multiple views simultaneously in order to improve registration accuracy. They are designed to work on two scenarios: on rigidly related views and on non-rigidly related views. These methods exploit the liver’s anatomical landmarks and texture information available in all the views to constrain registration. Results We evaluated the registration accuracy of our methods quantitatively on synthetic and phantom data, and qualitatively on patient data. We measured 3D target registration errors in mm for the whole liver for the quantitative case, and 2D reprojection errors in pixels for the qualitative case. Conclusion The proposed rigidly related multi-view methods improve registration accuracy compared to the baseline single-view method. They comply with the 1 cm oncologic resection margin advised for hepatocellular carcinoma interventions, depending on the available registration constraints. The non-rigidly related multi-view method does not provide a noticeable improvement. This means that using multiple views with the rigidity assumption achieves the best overall registration error.</description><subject>Accuracy</subject><subject>Augmented reality</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Deformation</subject><subject>Errors</subject><subject>Formability</subject><subject>Health Informatics</subject><subject>Imaging</subject><subject>Laparoscopy</subject><subject>Liver</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Original Article</subject><subject>Pattern Recognition and Graphics</subject><subject>Radiology</subject><subject>Registration</subject><subject>Surgery</subject><subject>Three dimensional models</subject><subject>Vision</subject><issn>1861-6429</issn><issn>1861-6410</issn><issn>1861-6429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kctKxDAUhoMoOF5ewFXAjZtqT5pLs5QZbzDgZmYd0jQtHTpNTVphdr6Db-iTmLGC4sJFLhy-_3DO_yN0Aek1pKm4CQCM5klKSDxC0AQO0AxyDgmnRB7--h-jkxA2aUqZyNgM7dah6Wq8Hduh6VuLm62ubcC6K7Fx3eBGH3DlPC5tvLe6iEi2-Hh7Jwvsbd2EweuhcR12Fda499b1dl95tXi-wk2HW91r74JxfWNwG-seh9HX1u_O0FGl22DPv99TtL6_W80fk-Xzw9P8dpkYkpMhsZxSUnIoCxlHFgBQcmkYpyAzQqWsrGESUmDGGA6sMBREUQopqC1JnhXZKbqa-vbevYw2DGrbBGPbVnfWjUERQRhnmeQ0opd_0E00oIvTRSpj0WGe7ykyUSYuFrytVO-jbX6nIFX7NNSUhoppqK80FERRNolChLu4_0_rf1SflQ2N6w</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Espinel, Yamid</creator><creator>Calvet, Lilian</creator><creator>Botros, Karim</creator><creator>Buc, Emmanuel</creator><creator>Tilmant, Christophe</creator><creator>Bartoli, Adrien</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7637-0137</orcidid></search><sort><creationdate>20221201</creationdate><title>Using multiple images and contours for deformable 3D–2D registration of a preoperative CT in laparoscopic liver surgery</title><author>Espinel, Yamid ; Calvet, Lilian ; Botros, Karim ; Buc, Emmanuel ; Tilmant, Christophe ; Bartoli, Adrien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-e6442d61db94577111d69c5641932499fec591015ccc615bc417bd7974ed283b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Augmented reality</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Deformation</topic><topic>Errors</topic><topic>Formability</topic><topic>Health Informatics</topic><topic>Imaging</topic><topic>Laparoscopy</topic><topic>Liver</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Original Article</topic><topic>Pattern Recognition and Graphics</topic><topic>Radiology</topic><topic>Registration</topic><topic>Surgery</topic><topic>Three dimensional models</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Espinel, Yamid</creatorcontrib><creatorcontrib>Calvet, Lilian</creatorcontrib><creatorcontrib>Botros, Karim</creatorcontrib><creatorcontrib>Buc, Emmanuel</creatorcontrib><creatorcontrib>Tilmant, Christophe</creatorcontrib><creatorcontrib>Bartoli, Adrien</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for computer assisted radiology and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Espinel, Yamid</au><au>Calvet, Lilian</au><au>Botros, Karim</au><au>Buc, Emmanuel</au><au>Tilmant, Christophe</au><au>Bartoli, Adrien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using multiple images and contours for deformable 3D–2D registration of a preoperative CT in laparoscopic liver surgery</atitle><jtitle>International journal for computer assisted radiology and surgery</jtitle><stitle>Int J CARS</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>17</volume><issue>12</issue><spage>2211</spage><epage>2219</epage><pages>2211-2219</pages><issn>1861-6429</issn><issn>1861-6410</issn><eissn>1861-6429</eissn><abstract>Purpose Laparoscopic liver resection is a challenging procedure because of the difficulty to localise inner structures such as tumours and vessels. Augmented reality overcomes this problem by overlaying preoperative 3D models on the laparoscopic views. It requires deformable registration of the preoperative 3D models to the laparoscopic views, which is a challenging task due to the liver flexibility and partial visibility. Methods We propose several multi-view registration methods exploiting information from multiple views simultaneously in order to improve registration accuracy. They are designed to work on two scenarios: on rigidly related views and on non-rigidly related views. These methods exploit the liver’s anatomical landmarks and texture information available in all the views to constrain registration. Results We evaluated the registration accuracy of our methods quantitatively on synthetic and phantom data, and qualitatively on patient data. We measured 3D target registration errors in mm for the whole liver for the quantitative case, and 2D reprojection errors in pixels for the qualitative case. Conclusion The proposed rigidly related multi-view methods improve registration accuracy compared to the baseline single-view method. They comply with the 1 cm oncologic resection margin advised for hepatocellular carcinoma interventions, depending on the available registration constraints. The non-rigidly related multi-view method does not provide a noticeable improvement. This means that using multiple views with the rigidity assumption achieves the best overall registration error.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11548-022-02774-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7637-0137</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-6429
ispartof International journal for computer assisted radiology and surgery, 2022-12, Vol.17 (12), p.2211-2219
issn 1861-6429
1861-6410
1861-6429
language eng
recordid cdi_proquest_miscellaneous_2725653964
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Augmented reality
Computer Imaging
Computer Science
Deformation
Errors
Formability
Health Informatics
Imaging
Laparoscopy
Liver
Medicine
Medicine & Public Health
Original Article
Pattern Recognition and Graphics
Radiology
Registration
Surgery
Three dimensional models
Vision
title Using multiple images and contours for deformable 3D–2D registration of a preoperative CT in laparoscopic liver surgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20multiple%20images%20and%20contours%20for%20deformable%203D%E2%80%932D%20registration%20of%20a%20preoperative%20CT%20in%20laparoscopic%20liver%20surgery&rft.jtitle=International%20journal%20for%20computer%20assisted%20radiology%20and%20surgery&rft.au=Espinel,%20Yamid&rft.date=2022-12-01&rft.volume=17&rft.issue=12&rft.spage=2211&rft.epage=2219&rft.pages=2211-2219&rft.issn=1861-6429&rft.eissn=1861-6429&rft_id=info:doi/10.1007/s11548-022-02774-1&rft_dat=%3Cproquest_cross%3E2725653964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2735548684&rft_id=info:pmid/&rfr_iscdi=true