Proprioception and Exteroception of a Soft Robotic Finger Using Neuromorphic Vision-Based Sensing
Equipping soft robotic grippers with sensing and perception capabilities faces significant challenges due to their high compliance and flexibility, limiting their ability to successfully interact with the environment. In this work, we propose a sensorized soft robotic finger with embedded marker pat...
Gespeichert in:
Veröffentlicht in: | Soft robotics 2023-06, Vol.10 (3), p.467-481 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 481 |
---|---|
container_issue | 3 |
container_start_page | 467 |
container_title | Soft robotics |
container_volume | 10 |
creator | Faris, Omar Muthusamy, Rajkumar Renda, Federico Hussain, Irfan Gan, Dongming Seneviratne, Lakmal Zweiri, Yahya |
description | Equipping soft robotic grippers with sensing and perception capabilities faces significant challenges due to their high compliance and flexibility, limiting their ability to successfully interact with the environment. In this work, we propose a sensorized soft robotic finger with embedded marker pattern that integrates a high-speed neuromorphic event-based camera to enable finger proprioception and exteroception. A learning-based approach involving a convolutional neural network is developed to process event-based heat maps and achieve specific sensing tasks. The feasibility of the sensing approach for proprioception is demonstrated by showing its ability to predict the two-dimensional deformation of three points located on the finger structure, whereas the exteroception capability is assessed in a slip detection task that can classify slip heat maps at a temporal resolution of 2 ms. Our results show that our proposed approach can enable complete sensorization of the finger for both proprioception and exteroception using a single camera without negatively affecting the finger compliance. Using such sensorized finger in robotic grippers may provide safe, adaptive, and precise grasping for handling a wide category of objects. |
doi_str_mv | 10.1089/soro.2022.0030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2725652829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725652829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-29301316f0eb867164edae8ddfb45b1c8e85a5880e0aec691c56b889196acc5d3</originalsourceid><addsrcrecordid>eNqFkMFPwyAUh4nRODN39Wg4emkFWig96rKpyaLGOa-E0letacuENtH_XprNXeXyyON7vxc-hC4oiSmR-bW3zsaMMBYTkpAjdMaoyCNOJTk-3DM2QTPvP0k4eUYEJadokgjGaS7YGdLPzm5dbQ1s-9p2WHclXnz34A4dW2GN17bq8YstbF8bvKy7d3B440PFjzA421q3_Qgvb7UPI9Gt9lDiNXQjcY5OKt14mO3rFG2Wi9f5fbR6unuY36wik6Skj1ieEJpQUREopMioSKHUIMuyKlJeUCNBcs2lJEA0GJFTw0UhZR6-oY3hZTJFV7vcrbNfA_hetbU30DS6Azt4xTLGBWcyLJqieIcaZ713UKmgoNXuR1GiRrNqNKtGs2o0GwYu99lD0UJ5wP88BiDdAWNbd11TQwGu_y_3FzHxhvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725652829</pqid></control><display><type>article</type><title>Proprioception and Exteroception of a Soft Robotic Finger Using Neuromorphic Vision-Based Sensing</title><source>Alma/SFX Local Collection</source><creator>Faris, Omar ; Muthusamy, Rajkumar ; Renda, Federico ; Hussain, Irfan ; Gan, Dongming ; Seneviratne, Lakmal ; Zweiri, Yahya</creator><creatorcontrib>Faris, Omar ; Muthusamy, Rajkumar ; Renda, Federico ; Hussain, Irfan ; Gan, Dongming ; Seneviratne, Lakmal ; Zweiri, Yahya</creatorcontrib><description>Equipping soft robotic grippers with sensing and perception capabilities faces significant challenges due to their high compliance and flexibility, limiting their ability to successfully interact with the environment. In this work, we propose a sensorized soft robotic finger with embedded marker pattern that integrates a high-speed neuromorphic event-based camera to enable finger proprioception and exteroception. A learning-based approach involving a convolutional neural network is developed to process event-based heat maps and achieve specific sensing tasks. The feasibility of the sensing approach for proprioception is demonstrated by showing its ability to predict the two-dimensional deformation of three points located on the finger structure, whereas the exteroception capability is assessed in a slip detection task that can classify slip heat maps at a temporal resolution of 2 ms. Our results show that our proposed approach can enable complete sensorization of the finger for both proprioception and exteroception using a single camera without negatively affecting the finger compliance. Using such sensorized finger in robotic grippers may provide safe, adaptive, and precise grasping for handling a wide category of objects.</description><identifier>ISSN: 2169-5172</identifier><identifier>EISSN: 2169-5180</identifier><identifier>DOI: 10.1089/soro.2022.0030</identifier><identifier>PMID: 36251962</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc., publishers</publisher><ispartof>Soft robotics, 2023-06, Vol.10 (3), p.467-481</ispartof><rights>2022, Mary Ann Liebert, Inc., publishers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-29301316f0eb867164edae8ddfb45b1c8e85a5880e0aec691c56b889196acc5d3</citedby><cites>FETCH-LOGICAL-c340t-29301316f0eb867164edae8ddfb45b1c8e85a5880e0aec691c56b889196acc5d3</cites><orcidid>0000-0002-1833-9809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36251962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Faris, Omar</creatorcontrib><creatorcontrib>Muthusamy, Rajkumar</creatorcontrib><creatorcontrib>Renda, Federico</creatorcontrib><creatorcontrib>Hussain, Irfan</creatorcontrib><creatorcontrib>Gan, Dongming</creatorcontrib><creatorcontrib>Seneviratne, Lakmal</creatorcontrib><creatorcontrib>Zweiri, Yahya</creatorcontrib><title>Proprioception and Exteroception of a Soft Robotic Finger Using Neuromorphic Vision-Based Sensing</title><title>Soft robotics</title><addtitle>Soft Robot</addtitle><description>Equipping soft robotic grippers with sensing and perception capabilities faces significant challenges due to their high compliance and flexibility, limiting their ability to successfully interact with the environment. In this work, we propose a sensorized soft robotic finger with embedded marker pattern that integrates a high-speed neuromorphic event-based camera to enable finger proprioception and exteroception. A learning-based approach involving a convolutional neural network is developed to process event-based heat maps and achieve specific sensing tasks. The feasibility of the sensing approach for proprioception is demonstrated by showing its ability to predict the two-dimensional deformation of three points located on the finger structure, whereas the exteroception capability is assessed in a slip detection task that can classify slip heat maps at a temporal resolution of 2 ms. Our results show that our proposed approach can enable complete sensorization of the finger for both proprioception and exteroception using a single camera without negatively affecting the finger compliance. Using such sensorized finger in robotic grippers may provide safe, adaptive, and precise grasping for handling a wide category of objects.</description><issn>2169-5172</issn><issn>2169-5180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMFPwyAUh4nRODN39Wg4emkFWig96rKpyaLGOa-E0letacuENtH_XprNXeXyyON7vxc-hC4oiSmR-bW3zsaMMBYTkpAjdMaoyCNOJTk-3DM2QTPvP0k4eUYEJadokgjGaS7YGdLPzm5dbQ1s-9p2WHclXnz34A4dW2GN17bq8YstbF8bvKy7d3B440PFjzA421q3_Qgvb7UPI9Gt9lDiNXQjcY5OKt14mO3rFG2Wi9f5fbR6unuY36wik6Skj1ieEJpQUREopMioSKHUIMuyKlJeUCNBcs2lJEA0GJFTw0UhZR6-oY3hZTJFV7vcrbNfA_hetbU30DS6Azt4xTLGBWcyLJqieIcaZ713UKmgoNXuR1GiRrNqNKtGs2o0GwYu99lD0UJ5wP88BiDdAWNbd11TQwGu_y_3FzHxhvY</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Faris, Omar</creator><creator>Muthusamy, Rajkumar</creator><creator>Renda, Federico</creator><creator>Hussain, Irfan</creator><creator>Gan, Dongming</creator><creator>Seneviratne, Lakmal</creator><creator>Zweiri, Yahya</creator><general>Mary Ann Liebert, Inc., publishers</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1833-9809</orcidid></search><sort><creationdate>20230601</creationdate><title>Proprioception and Exteroception of a Soft Robotic Finger Using Neuromorphic Vision-Based Sensing</title><author>Faris, Omar ; Muthusamy, Rajkumar ; Renda, Federico ; Hussain, Irfan ; Gan, Dongming ; Seneviratne, Lakmal ; Zweiri, Yahya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-29301316f0eb867164edae8ddfb45b1c8e85a5880e0aec691c56b889196acc5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faris, Omar</creatorcontrib><creatorcontrib>Muthusamy, Rajkumar</creatorcontrib><creatorcontrib>Renda, Federico</creatorcontrib><creatorcontrib>Hussain, Irfan</creatorcontrib><creatorcontrib>Gan, Dongming</creatorcontrib><creatorcontrib>Seneviratne, Lakmal</creatorcontrib><creatorcontrib>Zweiri, Yahya</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Soft robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faris, Omar</au><au>Muthusamy, Rajkumar</au><au>Renda, Federico</au><au>Hussain, Irfan</au><au>Gan, Dongming</au><au>Seneviratne, Lakmal</au><au>Zweiri, Yahya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proprioception and Exteroception of a Soft Robotic Finger Using Neuromorphic Vision-Based Sensing</atitle><jtitle>Soft robotics</jtitle><addtitle>Soft Robot</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>10</volume><issue>3</issue><spage>467</spage><epage>481</epage><pages>467-481</pages><issn>2169-5172</issn><eissn>2169-5180</eissn><abstract>Equipping soft robotic grippers with sensing and perception capabilities faces significant challenges due to their high compliance and flexibility, limiting their ability to successfully interact with the environment. In this work, we propose a sensorized soft robotic finger with embedded marker pattern that integrates a high-speed neuromorphic event-based camera to enable finger proprioception and exteroception. A learning-based approach involving a convolutional neural network is developed to process event-based heat maps and achieve specific sensing tasks. The feasibility of the sensing approach for proprioception is demonstrated by showing its ability to predict the two-dimensional deformation of three points located on the finger structure, whereas the exteroception capability is assessed in a slip detection task that can classify slip heat maps at a temporal resolution of 2 ms. Our results show that our proposed approach can enable complete sensorization of the finger for both proprioception and exteroception using a single camera without negatively affecting the finger compliance. Using such sensorized finger in robotic grippers may provide safe, adaptive, and precise grasping for handling a wide category of objects.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc., publishers</pub><pmid>36251962</pmid><doi>10.1089/soro.2022.0030</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1833-9809</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-5172 |
ispartof | Soft robotics, 2023-06, Vol.10 (3), p.467-481 |
issn | 2169-5172 2169-5180 |
language | eng |
recordid | cdi_proquest_miscellaneous_2725652829 |
source | Alma/SFX Local Collection |
title | Proprioception and Exteroception of a Soft Robotic Finger Using Neuromorphic Vision-Based Sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proprioception%20and%20Exteroception%20of%20a%20Soft%20Robotic%20Finger%20Using%20Neuromorphic%20Vision-Based%20Sensing&rft.jtitle=Soft%20robotics&rft.au=Faris,%20Omar&rft.date=2023-06-01&rft.volume=10&rft.issue=3&rft.spage=467&rft.epage=481&rft.pages=467-481&rft.issn=2169-5172&rft.eissn=2169-5180&rft_id=info:doi/10.1089/soro.2022.0030&rft_dat=%3Cproquest_cross%3E2725652829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725652829&rft_id=info:pmid/36251962&rfr_iscdi=true |