Urine metabolomics reveals biomarkers and the underlying pathogenesis of diabetic kidney disease

Purpose Diabetic kidney disease (DKD) is the most common complication of type 2 diabetes mellitus (T2DM), and its pathogenesis is not yet fully understood and lacks noninvasive and effective diagnostic biomarkers. In this study, we performed urine metabolomics to identify biomarkers for DKD and to c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International urology and nephrology 2023-04, Vol.55 (4), p.1001-1013
Hauptverfasser: Luo, Maolin, Zhang, Zeyu, Lu, Yongping, Feng, Weifeng, Wu, Hongwei, Fan, Lijing, Guan, Baozhang, Dai, Yong, Tang, Donge, Dong, Xiangnan, Yun, Chen, Hocher, Berthold, Liu, Haiping, Li, Qiang, Yin, Lianghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1013
container_issue 4
container_start_page 1001
container_title International urology and nephrology
container_volume 55
creator Luo, Maolin
Zhang, Zeyu
Lu, Yongping
Feng, Weifeng
Wu, Hongwei
Fan, Lijing
Guan, Baozhang
Dai, Yong
Tang, Donge
Dong, Xiangnan
Yun, Chen
Hocher, Berthold
Liu, Haiping
Li, Qiang
Yin, Lianghong
description Purpose Diabetic kidney disease (DKD) is the most common complication of type 2 diabetes mellitus (T2DM), and its pathogenesis is not yet fully understood and lacks noninvasive and effective diagnostic biomarkers. In this study, we performed urine metabolomics to identify biomarkers for DKD and to clarify the potential mechanisms associated with disease progression. Methods We applied a liquid chromatography–mass spectrometry-based metabolomics method combined with bioinformatics analysis to investigate the urine metabolism characteristics of 79 participants, including healthy subjects ( n  = 20), T2DM patients ( n  = 20), 39 DKD patients that included 19 DKD with microalbuminuria (DKD + micro) and 20 DKD with macroalbuminuria (DKD + macro). Results Seventeen metabolites were identified between T2DM and DKD that were involved in amino acid, purine, nucleotide and primarily bile acid metabolism. Ultimately, a combined model consisting of 2 metabolites (tyramine and phenylalanylproline) was established, which had optimal diagnostic performance (area under the curve (AUC) = 0.94). We also identified 19 metabolites that were co-expressed within the DKD groups and 41 metabolites specifically expressed in the DKD + macro group. Ingenuity pathway analysis revealed three interaction networks of these 60 metabolites, involving the sirtuin signaling pathway and ferroptosis signaling pathway, as well as the downregulation of organic anion transporter 1, which may be important mechanisms that mediate the progression of DKD. Conclusions This work reveals the metabolic alterations in T2DM and DKD, constructs a combined model to distinguish them and delivers a novel strategy for studying the underlying mechanism and treatment of DKD.
doi_str_mv 10.1007/s11255-022-03326-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2725651280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789031721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4cfafab9d52b69c51f8939e43603f2adead54a3266bf319bdfdd0c077a351a313</originalsourceid><addsrcrecordid>eNp9kE9PHCEYh0ljU9dtv0APDYmXXqa-wDJ_jsZYbWLixT1TZnjZZZ2BFWaM--2L7rY1HjwB4fn9XngI-crgBwOozhJjXMoCOC9ACF4WTx_IjMlKFFzWi6NX-2NyktIGAJoa4BM5FmUOSihn5PcyOo90wFG3oQ-D6xKN-Ii6T7R1YdDxHmOi2hs6rpFO3mDsd86v6FaP67BCj8klGiw1Trc4uo7eO-Nxl88JdcLP5KPNZfjlsM7J8ufl3cV1cXN79evi_KboRCXHYtFZbXXbGMnbsukks3UjGlyIEoTl2qA2cqHzJ8vWCta0xhoDHVSVFpJpwcScfN_3bmN4mDCNanCpw77XHsOUFK-4LCXjNWT09A26CVP0-XWZqhsQrOLPhXxPdTGkFNGqbXTZx04xUM_-1d6_yv7Vi3_1lEPfDtVTO6D5F_krPANiD6R85VcY_89-p_YP_ZOSTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789031721</pqid></control><display><type>article</type><title>Urine metabolomics reveals biomarkers and the underlying pathogenesis of diabetic kidney disease</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Luo, Maolin ; Zhang, Zeyu ; Lu, Yongping ; Feng, Weifeng ; Wu, Hongwei ; Fan, Lijing ; Guan, Baozhang ; Dai, Yong ; Tang, Donge ; Dong, Xiangnan ; Yun, Chen ; Hocher, Berthold ; Liu, Haiping ; Li, Qiang ; Yin, Lianghong</creator><creatorcontrib>Luo, Maolin ; Zhang, Zeyu ; Lu, Yongping ; Feng, Weifeng ; Wu, Hongwei ; Fan, Lijing ; Guan, Baozhang ; Dai, Yong ; Tang, Donge ; Dong, Xiangnan ; Yun, Chen ; Hocher, Berthold ; Liu, Haiping ; Li, Qiang ; Yin, Lianghong</creatorcontrib><description>Purpose Diabetic kidney disease (DKD) is the most common complication of type 2 diabetes mellitus (T2DM), and its pathogenesis is not yet fully understood and lacks noninvasive and effective diagnostic biomarkers. In this study, we performed urine metabolomics to identify biomarkers for DKD and to clarify the potential mechanisms associated with disease progression. Methods We applied a liquid chromatography–mass spectrometry-based metabolomics method combined with bioinformatics analysis to investigate the urine metabolism characteristics of 79 participants, including healthy subjects ( n  = 20), T2DM patients ( n  = 20), 39 DKD patients that included 19 DKD with microalbuminuria (DKD + micro) and 20 DKD with macroalbuminuria (DKD + macro). Results Seventeen metabolites were identified between T2DM and DKD that were involved in amino acid, purine, nucleotide and primarily bile acid metabolism. Ultimately, a combined model consisting of 2 metabolites (tyramine and phenylalanylproline) was established, which had optimal diagnostic performance (area under the curve (AUC) = 0.94). We also identified 19 metabolites that were co-expressed within the DKD groups and 41 metabolites specifically expressed in the DKD + macro group. Ingenuity pathway analysis revealed three interaction networks of these 60 metabolites, involving the sirtuin signaling pathway and ferroptosis signaling pathway, as well as the downregulation of organic anion transporter 1, which may be important mechanisms that mediate the progression of DKD. Conclusions This work reveals the metabolic alterations in T2DM and DKD, constructs a combined model to distinguish them and delivers a novel strategy for studying the underlying mechanism and treatment of DKD.</description><identifier>ISSN: 1573-2584</identifier><identifier>ISSN: 0301-1623</identifier><identifier>EISSN: 1573-2584</identifier><identifier>DOI: 10.1007/s11255-022-03326-x</identifier><identifier>PMID: 36255506</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Albuminuria - complications ; Amino acids ; Bioinformatics ; Biomarkers ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 ; Diabetic Nephropathies - diagnosis ; Diabetic Nephropathies - etiology ; Diabetic Nephropathies - metabolism ; Diabetic nephropathy ; Ferroptosis ; Humans ; Kidney diseases ; Liquid chromatography ; Mass spectroscopy ; Medicine ; Medicine &amp; Public Health ; Metabolism ; Metabolites ; Metabolomics ; Metabolomics - methods ; Nephrology ; Nephrology - Original Paper ; Pathogenesis ; Signal transduction ; Tyramine ; Urine ; Urology</subject><ispartof>International urology and nephrology, 2023-04, Vol.55 (4), p.1001-1013</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4cfafab9d52b69c51f8939e43603f2adead54a3266bf319bdfdd0c077a351a313</citedby><cites>FETCH-LOGICAL-c375t-4cfafab9d52b69c51f8939e43603f2adead54a3266bf319bdfdd0c077a351a313</cites><orcidid>0000-0002-5005-5304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11255-022-03326-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11255-022-03326-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36255506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Maolin</creatorcontrib><creatorcontrib>Zhang, Zeyu</creatorcontrib><creatorcontrib>Lu, Yongping</creatorcontrib><creatorcontrib>Feng, Weifeng</creatorcontrib><creatorcontrib>Wu, Hongwei</creatorcontrib><creatorcontrib>Fan, Lijing</creatorcontrib><creatorcontrib>Guan, Baozhang</creatorcontrib><creatorcontrib>Dai, Yong</creatorcontrib><creatorcontrib>Tang, Donge</creatorcontrib><creatorcontrib>Dong, Xiangnan</creatorcontrib><creatorcontrib>Yun, Chen</creatorcontrib><creatorcontrib>Hocher, Berthold</creatorcontrib><creatorcontrib>Liu, Haiping</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Yin, Lianghong</creatorcontrib><title>Urine metabolomics reveals biomarkers and the underlying pathogenesis of diabetic kidney disease</title><title>International urology and nephrology</title><addtitle>Int Urol Nephrol</addtitle><addtitle>Int Urol Nephrol</addtitle><description>Purpose Diabetic kidney disease (DKD) is the most common complication of type 2 diabetes mellitus (T2DM), and its pathogenesis is not yet fully understood and lacks noninvasive and effective diagnostic biomarkers. In this study, we performed urine metabolomics to identify biomarkers for DKD and to clarify the potential mechanisms associated with disease progression. Methods We applied a liquid chromatography–mass spectrometry-based metabolomics method combined with bioinformatics analysis to investigate the urine metabolism characteristics of 79 participants, including healthy subjects ( n  = 20), T2DM patients ( n  = 20), 39 DKD patients that included 19 DKD with microalbuminuria (DKD + micro) and 20 DKD with macroalbuminuria (DKD + macro). Results Seventeen metabolites were identified between T2DM and DKD that were involved in amino acid, purine, nucleotide and primarily bile acid metabolism. Ultimately, a combined model consisting of 2 metabolites (tyramine and phenylalanylproline) was established, which had optimal diagnostic performance (area under the curve (AUC) = 0.94). We also identified 19 metabolites that were co-expressed within the DKD groups and 41 metabolites specifically expressed in the DKD + macro group. Ingenuity pathway analysis revealed three interaction networks of these 60 metabolites, involving the sirtuin signaling pathway and ferroptosis signaling pathway, as well as the downregulation of organic anion transporter 1, which may be important mechanisms that mediate the progression of DKD. Conclusions This work reveals the metabolic alterations in T2DM and DKD, constructs a combined model to distinguish them and delivers a novel strategy for studying the underlying mechanism and treatment of DKD.</description><subject>Albuminuria - complications</subject><subject>Amino acids</subject><subject>Bioinformatics</subject><subject>Biomarkers</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2</subject><subject>Diabetic Nephropathies - diagnosis</subject><subject>Diabetic Nephropathies - etiology</subject><subject>Diabetic Nephropathies - metabolism</subject><subject>Diabetic nephropathy</subject><subject>Ferroptosis</subject><subject>Humans</subject><subject>Kidney diseases</subject><subject>Liquid chromatography</subject><subject>Mass spectroscopy</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Metabolomics - methods</subject><subject>Nephrology</subject><subject>Nephrology - Original Paper</subject><subject>Pathogenesis</subject><subject>Signal transduction</subject><subject>Tyramine</subject><subject>Urine</subject><subject>Urology</subject><issn>1573-2584</issn><issn>0301-1623</issn><issn>1573-2584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE9PHCEYh0ljU9dtv0APDYmXXqa-wDJ_jsZYbWLixT1TZnjZZZ2BFWaM--2L7rY1HjwB4fn9XngI-crgBwOozhJjXMoCOC9ACF4WTx_IjMlKFFzWi6NX-2NyktIGAJoa4BM5FmUOSihn5PcyOo90wFG3oQ-D6xKN-Ii6T7R1YdDxHmOi2hs6rpFO3mDsd86v6FaP67BCj8klGiw1Trc4uo7eO-Nxl88JdcLP5KPNZfjlsM7J8ufl3cV1cXN79evi_KboRCXHYtFZbXXbGMnbsukks3UjGlyIEoTl2qA2cqHzJ8vWCta0xhoDHVSVFpJpwcScfN_3bmN4mDCNanCpw77XHsOUFK-4LCXjNWT09A26CVP0-XWZqhsQrOLPhXxPdTGkFNGqbXTZx04xUM_-1d6_yv7Vi3_1lEPfDtVTO6D5F_krPANiD6R85VcY_89-p_YP_ZOSTw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Luo, Maolin</creator><creator>Zhang, Zeyu</creator><creator>Lu, Yongping</creator><creator>Feng, Weifeng</creator><creator>Wu, Hongwei</creator><creator>Fan, Lijing</creator><creator>Guan, Baozhang</creator><creator>Dai, Yong</creator><creator>Tang, Donge</creator><creator>Dong, Xiangnan</creator><creator>Yun, Chen</creator><creator>Hocher, Berthold</creator><creator>Liu, Haiping</creator><creator>Li, Qiang</creator><creator>Yin, Lianghong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5005-5304</orcidid></search><sort><creationdate>20230401</creationdate><title>Urine metabolomics reveals biomarkers and the underlying pathogenesis of diabetic kidney disease</title><author>Luo, Maolin ; Zhang, Zeyu ; Lu, Yongping ; Feng, Weifeng ; Wu, Hongwei ; Fan, Lijing ; Guan, Baozhang ; Dai, Yong ; Tang, Donge ; Dong, Xiangnan ; Yun, Chen ; Hocher, Berthold ; Liu, Haiping ; Li, Qiang ; Yin, Lianghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4cfafab9d52b69c51f8939e43603f2adead54a3266bf319bdfdd0c077a351a313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Albuminuria - complications</topic><topic>Amino acids</topic><topic>Bioinformatics</topic><topic>Biomarkers</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2</topic><topic>Diabetic Nephropathies - diagnosis</topic><topic>Diabetic Nephropathies - etiology</topic><topic>Diabetic Nephropathies - metabolism</topic><topic>Diabetic nephropathy</topic><topic>Ferroptosis</topic><topic>Humans</topic><topic>Kidney diseases</topic><topic>Liquid chromatography</topic><topic>Mass spectroscopy</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Metabolomics - methods</topic><topic>Nephrology</topic><topic>Nephrology - Original Paper</topic><topic>Pathogenesis</topic><topic>Signal transduction</topic><topic>Tyramine</topic><topic>Urine</topic><topic>Urology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Maolin</creatorcontrib><creatorcontrib>Zhang, Zeyu</creatorcontrib><creatorcontrib>Lu, Yongping</creatorcontrib><creatorcontrib>Feng, Weifeng</creatorcontrib><creatorcontrib>Wu, Hongwei</creatorcontrib><creatorcontrib>Fan, Lijing</creatorcontrib><creatorcontrib>Guan, Baozhang</creatorcontrib><creatorcontrib>Dai, Yong</creatorcontrib><creatorcontrib>Tang, Donge</creatorcontrib><creatorcontrib>Dong, Xiangnan</creatorcontrib><creatorcontrib>Yun, Chen</creatorcontrib><creatorcontrib>Hocher, Berthold</creatorcontrib><creatorcontrib>Liu, Haiping</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Yin, Lianghong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>International urology and nephrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Maolin</au><au>Zhang, Zeyu</au><au>Lu, Yongping</au><au>Feng, Weifeng</au><au>Wu, Hongwei</au><au>Fan, Lijing</au><au>Guan, Baozhang</au><au>Dai, Yong</au><au>Tang, Donge</au><au>Dong, Xiangnan</au><au>Yun, Chen</au><au>Hocher, Berthold</au><au>Liu, Haiping</au><au>Li, Qiang</au><au>Yin, Lianghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urine metabolomics reveals biomarkers and the underlying pathogenesis of diabetic kidney disease</atitle><jtitle>International urology and nephrology</jtitle><stitle>Int Urol Nephrol</stitle><addtitle>Int Urol Nephrol</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>55</volume><issue>4</issue><spage>1001</spage><epage>1013</epage><pages>1001-1013</pages><issn>1573-2584</issn><issn>0301-1623</issn><eissn>1573-2584</eissn><abstract>Purpose Diabetic kidney disease (DKD) is the most common complication of type 2 diabetes mellitus (T2DM), and its pathogenesis is not yet fully understood and lacks noninvasive and effective diagnostic biomarkers. In this study, we performed urine metabolomics to identify biomarkers for DKD and to clarify the potential mechanisms associated with disease progression. Methods We applied a liquid chromatography–mass spectrometry-based metabolomics method combined with bioinformatics analysis to investigate the urine metabolism characteristics of 79 participants, including healthy subjects ( n  = 20), T2DM patients ( n  = 20), 39 DKD patients that included 19 DKD with microalbuminuria (DKD + micro) and 20 DKD with macroalbuminuria (DKD + macro). Results Seventeen metabolites were identified between T2DM and DKD that were involved in amino acid, purine, nucleotide and primarily bile acid metabolism. Ultimately, a combined model consisting of 2 metabolites (tyramine and phenylalanylproline) was established, which had optimal diagnostic performance (area under the curve (AUC) = 0.94). We also identified 19 metabolites that were co-expressed within the DKD groups and 41 metabolites specifically expressed in the DKD + macro group. Ingenuity pathway analysis revealed three interaction networks of these 60 metabolites, involving the sirtuin signaling pathway and ferroptosis signaling pathway, as well as the downregulation of organic anion transporter 1, which may be important mechanisms that mediate the progression of DKD. Conclusions This work reveals the metabolic alterations in T2DM and DKD, constructs a combined model to distinguish them and delivers a novel strategy for studying the underlying mechanism and treatment of DKD.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>36255506</pmid><doi>10.1007/s11255-022-03326-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5005-5304</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1573-2584
ispartof International urology and nephrology, 2023-04, Vol.55 (4), p.1001-1013
issn 1573-2584
0301-1623
1573-2584
language eng
recordid cdi_proquest_miscellaneous_2725651280
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Albuminuria - complications
Amino acids
Bioinformatics
Biomarkers
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2
Diabetic Nephropathies - diagnosis
Diabetic Nephropathies - etiology
Diabetic Nephropathies - metabolism
Diabetic nephropathy
Ferroptosis
Humans
Kidney diseases
Liquid chromatography
Mass spectroscopy
Medicine
Medicine & Public Health
Metabolism
Metabolites
Metabolomics
Metabolomics - methods
Nephrology
Nephrology - Original Paper
Pathogenesis
Signal transduction
Tyramine
Urine
Urology
title Urine metabolomics reveals biomarkers and the underlying pathogenesis of diabetic kidney disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urine%20metabolomics%20reveals%20biomarkers%20and%20the%20underlying%20pathogenesis%20of%20diabetic%20kidney%20disease&rft.jtitle=International%20urology%20and%20nephrology&rft.au=Luo,%20Maolin&rft.date=2023-04-01&rft.volume=55&rft.issue=4&rft.spage=1001&rft.epage=1013&rft.pages=1001-1013&rft.issn=1573-2584&rft.eissn=1573-2584&rft_id=info:doi/10.1007/s11255-022-03326-x&rft_dat=%3Cproquest_cross%3E2789031721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789031721&rft_id=info:pmid/36255506&rfr_iscdi=true