How Have Global River Widths Changed Over Time?

Changes in a river's width reflect natural and anthropogenic impacts on local and upstream/downstream hydraulic and hydrologic processes. Temporal variation of river width also impacts biogeochemical exchange and reflects geomorphologic evolution. However, while global maps of mean river width...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2022-08, Vol.58 (8), p.e2021WR031712-n/a
Hauptverfasser: Feng, Dongmei, Gleason, Colin J., Yang, Xiao, Allen, George H., Pavelsky, Tamlin M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e2021WR031712
container_title Water resources research
container_volume 58
creator Feng, Dongmei
Gleason, Colin J.
Yang, Xiao
Allen, George H.
Pavelsky, Tamlin M.
description Changes in a river's width reflect natural and anthropogenic impacts on local and upstream/downstream hydraulic and hydrologic processes. Temporal variation of river width also impacts biogeochemical exchange and reflects geomorphologic evolution. However, while global maps of mean river width and dynamic water surface extent exist, there is currently no standardized global assessment of river widths that documents changes over time. Therefore, we made repeated width measurements from Landsat images for all rivers wider than 90 m collected from 1984 to 2020 (named Global LOng‐term river Width, GLOW), which consists of ∼1.2 billion cross‐sectional river width measurements, with an average of 3,000 width measurements per 10‐km reach. With GLOW, we investigated the temporal variations of global river width, quantified by the interquartile range (IQR) and temporal trend. We found that 85% of global rivers have a width IQR 90 m wide over 1984–2020, we find 66% of rivers have only slightly variable widths Thirty‐seven percent of global rivers show significant trends in width over the past 37 years, and this number is higher for human‐regulated rivers (46%) The most important factor driving temporal variations in river width is the climate for natural rivers and soil condition for regulated rivers
doi_str_mv 10.1029/2021WR031712
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2725443906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725443906</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4247-ab1e55318ba99de0e8ca86f5b550f5d9b753e9947d8d26f0b92df1eaf0a589e83</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFFurN88S8OLB2P3ezEkkaCsIhVDpMWy6E5uSNDXbD_rvTWkV8eBpYHh4Z3gJuWb0gVEOfU45myRUMMP4CekykDI0YMQp6VIqRcgEmA658H5OKZNKm3PSEZpL4Aa6pD-st8HQbjAYlHVmyyApNtgEk8KtZj6IZ3bxgS4Y7XfjosLHS3KW29Lj1XH2yPvL8zgehm-jwWv89BZayaUJbcZQKcGizAI4pBhNbaRzlSlFc-UgM0oggDQuclznNAPucoY2p1ZFgJHokbtD7rKpP9foV2lV-CmWpV1gvfYpN1xJKYDqlt7-ofN63Sza71pFjebtLWjV_UFNm9r7BvN02RSVbXYpo-m-yPR3kS2_OYauswrdD_5urgXiALZFibt_w9JJEidcM23EFxzleVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2707627539</pqid></control><display><type>article</type><title>How Have Global River Widths Changed Over Time?</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Feng, Dongmei ; Gleason, Colin J. ; Yang, Xiao ; Allen, George H. ; Pavelsky, Tamlin M.</creator><creatorcontrib>Feng, Dongmei ; Gleason, Colin J. ; Yang, Xiao ; Allen, George H. ; Pavelsky, Tamlin M.</creatorcontrib><description>Changes in a river's width reflect natural and anthropogenic impacts on local and upstream/downstream hydraulic and hydrologic processes. Temporal variation of river width also impacts biogeochemical exchange and reflects geomorphologic evolution. However, while global maps of mean river width and dynamic water surface extent exist, there is currently no standardized global assessment of river widths that documents changes over time. Therefore, we made repeated width measurements from Landsat images for all rivers wider than 90 m collected from 1984 to 2020 (named Global LOng‐term river Width, GLOW), which consists of ∼1.2 billion cross‐sectional river width measurements, with an average of 3,000 width measurements per 10‐km reach. With GLOW, we investigated the temporal variations of global river width, quantified by the interquartile range (IQR) and temporal trend. We found that 85% of global rivers have a width IQR &lt;150 m. We also found that 37% of global river segments show significant temporal trends in width over the past 37 years, and this number is higher (46%) for human‐regulated rivers. Further, we leveraged machine learning to identify the most important factors explaining river width variations and revealed that these driving factors are significantly different between free‐flowing and non‐free‐flowing rivers. Specifically, the most important factor driving temporal variations in river width is the climate for free‐flowing rivers, and is soil condition for human‐impacted rivers. Finally, we anticipate that this study and the public release of GLOW will improve the understanding of river dynamics and catalyze additional interdisciplinary studies. Key Points With ∼1.2 billion widths measured from Landsat for global rivers &gt;90 m wide over 1984–2020, we find 66% of rivers have only slightly variable widths Thirty‐seven percent of global rivers show significant trends in width over the past 37 years, and this number is higher for human‐regulated rivers (46%) The most important factor driving temporal variations in river width is the climate for natural rivers and soil condition for regulated rivers</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2021WR031712</identifier><identifier>PMID: 36249279</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Anthropogenic factors ; driving factors ; Geomorphology ; global river width ; Human influences ; Hydrologic processes ; Hydrology ; Interdisciplinary studies ; Landsat ; Machine learning ; Regulated rivers ; Remote sensing ; River regulations ; Rivers ; Satellite imagery ; Soil conditions ; temporal trend ; temporal variability ; Temporal variations ; Width</subject><ispartof>Water resources research, 2022-08, Vol.58 (8), p.e2021WR031712-n/a</ispartof><rights>2022. The Authors.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4247-ab1e55318ba99de0e8ca86f5b550f5d9b753e9947d8d26f0b92df1eaf0a589e83</citedby><cites>FETCH-LOGICAL-a4247-ab1e55318ba99de0e8ca86f5b550f5d9b753e9947d8d26f0b92df1eaf0a589e83</cites><orcidid>0000-0003-3141-0371 ; 0000-0002-0046-832X ; 0000-0001-8301-5301 ; 0000-0002-0613-3838 ; 0000-0002-3525-6220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021WR031712$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021WR031712$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36249279$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Dongmei</creatorcontrib><creatorcontrib>Gleason, Colin J.</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Allen, George H.</creatorcontrib><creatorcontrib>Pavelsky, Tamlin M.</creatorcontrib><title>How Have Global River Widths Changed Over Time?</title><title>Water resources research</title><addtitle>Water Resour Res</addtitle><description>Changes in a river's width reflect natural and anthropogenic impacts on local and upstream/downstream hydraulic and hydrologic processes. Temporal variation of river width also impacts biogeochemical exchange and reflects geomorphologic evolution. However, while global maps of mean river width and dynamic water surface extent exist, there is currently no standardized global assessment of river widths that documents changes over time. Therefore, we made repeated width measurements from Landsat images for all rivers wider than 90 m collected from 1984 to 2020 (named Global LOng‐term river Width, GLOW), which consists of ∼1.2 billion cross‐sectional river width measurements, with an average of 3,000 width measurements per 10‐km reach. With GLOW, we investigated the temporal variations of global river width, quantified by the interquartile range (IQR) and temporal trend. We found that 85% of global rivers have a width IQR &lt;150 m. We also found that 37% of global river segments show significant temporal trends in width over the past 37 years, and this number is higher (46%) for human‐regulated rivers. Further, we leveraged machine learning to identify the most important factors explaining river width variations and revealed that these driving factors are significantly different between free‐flowing and non‐free‐flowing rivers. Specifically, the most important factor driving temporal variations in river width is the climate for free‐flowing rivers, and is soil condition for human‐impacted rivers. Finally, we anticipate that this study and the public release of GLOW will improve the understanding of river dynamics and catalyze additional interdisciplinary studies. Key Points With ∼1.2 billion widths measured from Landsat for global rivers &gt;90 m wide over 1984–2020, we find 66% of rivers have only slightly variable widths Thirty‐seven percent of global rivers show significant trends in width over the past 37 years, and this number is higher for human‐regulated rivers (46%) The most important factor driving temporal variations in river width is the climate for natural rivers and soil condition for regulated rivers</description><subject>Anthropogenic factors</subject><subject>driving factors</subject><subject>Geomorphology</subject><subject>global river width</subject><subject>Human influences</subject><subject>Hydrologic processes</subject><subject>Hydrology</subject><subject>Interdisciplinary studies</subject><subject>Landsat</subject><subject>Machine learning</subject><subject>Regulated rivers</subject><subject>Remote sensing</subject><subject>River regulations</subject><subject>Rivers</subject><subject>Satellite imagery</subject><subject>Soil conditions</subject><subject>temporal trend</subject><subject>temporal variability</subject><subject>Temporal variations</subject><subject>Width</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90E1Lw0AQBuBFFFurN88S8OLB2P3ezEkkaCsIhVDpMWy6E5uSNDXbD_rvTWkV8eBpYHh4Z3gJuWb0gVEOfU45myRUMMP4CekykDI0YMQp6VIqRcgEmA658H5OKZNKm3PSEZpL4Aa6pD-st8HQbjAYlHVmyyApNtgEk8KtZj6IZ3bxgS4Y7XfjosLHS3KW29Lj1XH2yPvL8zgehm-jwWv89BZayaUJbcZQKcGizAI4pBhNbaRzlSlFc-UgM0oggDQuclznNAPucoY2p1ZFgJHokbtD7rKpP9foV2lV-CmWpV1gvfYpN1xJKYDqlt7-ofN63Sza71pFjebtLWjV_UFNm9r7BvN02RSVbXYpo-m-yPR3kS2_OYauswrdD_5urgXiALZFibt_w9JJEidcM23EFxzleVw</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Feng, Dongmei</creator><creator>Gleason, Colin J.</creator><creator>Yang, Xiao</creator><creator>Allen, George H.</creator><creator>Pavelsky, Tamlin M.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3141-0371</orcidid><orcidid>https://orcid.org/0000-0002-0046-832X</orcidid><orcidid>https://orcid.org/0000-0001-8301-5301</orcidid><orcidid>https://orcid.org/0000-0002-0613-3838</orcidid><orcidid>https://orcid.org/0000-0002-3525-6220</orcidid></search><sort><creationdate>202208</creationdate><title>How Have Global River Widths Changed Over Time?</title><author>Feng, Dongmei ; Gleason, Colin J. ; Yang, Xiao ; Allen, George H. ; Pavelsky, Tamlin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4247-ab1e55318ba99de0e8ca86f5b550f5d9b753e9947d8d26f0b92df1eaf0a589e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anthropogenic factors</topic><topic>driving factors</topic><topic>Geomorphology</topic><topic>global river width</topic><topic>Human influences</topic><topic>Hydrologic processes</topic><topic>Hydrology</topic><topic>Interdisciplinary studies</topic><topic>Landsat</topic><topic>Machine learning</topic><topic>Regulated rivers</topic><topic>Remote sensing</topic><topic>River regulations</topic><topic>Rivers</topic><topic>Satellite imagery</topic><topic>Soil conditions</topic><topic>temporal trend</topic><topic>temporal variability</topic><topic>Temporal variations</topic><topic>Width</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Dongmei</creatorcontrib><creatorcontrib>Gleason, Colin J.</creatorcontrib><creatorcontrib>Yang, Xiao</creatorcontrib><creatorcontrib>Allen, George H.</creatorcontrib><creatorcontrib>Pavelsky, Tamlin M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Dongmei</au><au>Gleason, Colin J.</au><au>Yang, Xiao</au><au>Allen, George H.</au><au>Pavelsky, Tamlin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Have Global River Widths Changed Over Time?</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour Res</addtitle><date>2022-08</date><risdate>2022</risdate><volume>58</volume><issue>8</issue><spage>e2021WR031712</spage><epage>n/a</epage><pages>e2021WR031712-n/a</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Changes in a river's width reflect natural and anthropogenic impacts on local and upstream/downstream hydraulic and hydrologic processes. Temporal variation of river width also impacts biogeochemical exchange and reflects geomorphologic evolution. However, while global maps of mean river width and dynamic water surface extent exist, there is currently no standardized global assessment of river widths that documents changes over time. Therefore, we made repeated width measurements from Landsat images for all rivers wider than 90 m collected from 1984 to 2020 (named Global LOng‐term river Width, GLOW), which consists of ∼1.2 billion cross‐sectional river width measurements, with an average of 3,000 width measurements per 10‐km reach. With GLOW, we investigated the temporal variations of global river width, quantified by the interquartile range (IQR) and temporal trend. We found that 85% of global rivers have a width IQR &lt;150 m. We also found that 37% of global river segments show significant temporal trends in width over the past 37 years, and this number is higher (46%) for human‐regulated rivers. Further, we leveraged machine learning to identify the most important factors explaining river width variations and revealed that these driving factors are significantly different between free‐flowing and non‐free‐flowing rivers. Specifically, the most important factor driving temporal variations in river width is the climate for free‐flowing rivers, and is soil condition for human‐impacted rivers. Finally, we anticipate that this study and the public release of GLOW will improve the understanding of river dynamics and catalyze additional interdisciplinary studies. Key Points With ∼1.2 billion widths measured from Landsat for global rivers &gt;90 m wide over 1984–2020, we find 66% of rivers have only slightly variable widths Thirty‐seven percent of global rivers show significant trends in width over the past 37 years, and this number is higher for human‐regulated rivers (46%) The most important factor driving temporal variations in river width is the climate for natural rivers and soil condition for regulated rivers</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36249279</pmid><doi>10.1029/2021WR031712</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3141-0371</orcidid><orcidid>https://orcid.org/0000-0002-0046-832X</orcidid><orcidid>https://orcid.org/0000-0001-8301-5301</orcidid><orcidid>https://orcid.org/0000-0002-0613-3838</orcidid><orcidid>https://orcid.org/0000-0002-3525-6220</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2022-08, Vol.58 (8), p.e2021WR031712-n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_2725443906
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Anthropogenic factors
driving factors
Geomorphology
global river width
Human influences
Hydrologic processes
Hydrology
Interdisciplinary studies
Landsat
Machine learning
Regulated rivers
Remote sensing
River regulations
Rivers
Satellite imagery
Soil conditions
temporal trend
temporal variability
Temporal variations
Width
title How Have Global River Widths Changed Over Time?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Have%20Global%20River%20Widths%20Changed%20Over%20Time?&rft.jtitle=Water%20resources%20research&rft.au=Feng,%20Dongmei&rft.date=2022-08&rft.volume=58&rft.issue=8&rft.spage=e2021WR031712&rft.epage=n/a&rft.pages=e2021WR031712-n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2021WR031712&rft_dat=%3Cproquest_cross%3E2725443906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2707627539&rft_id=info:pmid/36249279&rfr_iscdi=true