Creating morphological diversity in reptilian temporal skull region: A review of potential developmental mechanisms

Reptilian skull morphology is highly diverse and broadly categorized into three categories based on the number and position of the temporal fenestrations: anapsid, synapsid, and diapsid. According to recent phylogenetic analysis, temporal fenestrations evolved twice independently in amniotes, once i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolution & development 2023-01, Vol.25 (1), p.15-31
Hauptverfasser: Tokita, Masayoshi, Sato, Hiromu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 1
container_start_page 15
container_title Evolution & development
container_volume 25
creator Tokita, Masayoshi
Sato, Hiromu
description Reptilian skull morphology is highly diverse and broadly categorized into three categories based on the number and position of the temporal fenestrations: anapsid, synapsid, and diapsid. According to recent phylogenetic analysis, temporal fenestrations evolved twice independently in amniotes, once in Synapsida and once in Diapsida. Although functional aspects underlying the evolution of tetrapod temporal fenestrations have been well investigated, few studies have investigated the developmental mechanisms responsible for differences in the pattern of temporal skull region. To determine what these mechanisms might be, we first examined how the five temporal bones develop by comparing embryonic cranial osteogenesis between representative extant reptilian species. The pattern of temporal skull region may depend on differences in temporal bone growth rate and growth direction during ontogeny. Next, we compared the histogenesis patterns and the expression of two key osteogenic genes, Runx2 and Msx2, in the temporal region of the representative reptilian embryos. Our comparative analyses suggest that the embryonic histological condition of the domain where temporal fenestrations would form predicts temporal skull morphology in adults and regulatory modifications of Runx2 and Msx2 expression in osteogenic mesenchymal precursor cells are likely involved in generating morphological diversity in the temporal skull region of reptiles. Reptilian skull morphology is highly diverse but few studies have investigated the developmental mechanisms creating its diversity. To gain insights into the mechanisms, in this review article, we compared the pattern of cranial osteogenesis, temporal region histogenesis, and the expression of two key osteogenic genes, Runx2 and Msx2, in the temporal region between representative extant reptilian embryos.
doi_str_mv 10.1111/ede.12419
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2725442423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2763254059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3499-1bb200855290bfaf34c072fbb2667452840225eba3ec6eeb56713876fc3f49533</originalsourceid><addsrcrecordid>eNp1kctOwzAQRS0EoqWw4AdQJDawSOtn0rCrSnlIldiA1F3kpJPWxYmDnbTq3-M-YIGEN57xHB2NfBG6JrhP_BnAHPqEcpKcoC4RVISE09npvsah4GTWQRfOrTAmMafJOeqwiAocC9JFbmxBNqpaBKWx9dJos1C51MFcrcE61WwDVQUW6kZpJauggbI21s_dZ6u1HyyUqR6Cka_WCjaBKYLaNFA1aueANWhTl771XQn5UlbKle4SnRVSO7g63j308TR5H7-E07fn1_FoGuaMJ0lIsoxiPBSCJjgrZMF4jmNa-NcoirmgQ44pFZBJBnkEkIkoJmwYR0XOCp4Ixnro7uCtrflqwTVpqVwOWssKTOtSGlPBOeV0h97-QVemtZXfzlMR8xwWiafuD1RujXMWirS2qpR2mxKc7pJIfRLpPgnP3hyNbVbC_Jf8-XoPDA7ARmnY_m9KJ4-Tg_IbjySTIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2763254059</pqid></control><display><type>article</type><title>Creating morphological diversity in reptilian temporal skull region: A review of potential developmental mechanisms</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Tokita, Masayoshi ; Sato, Hiromu</creator><creatorcontrib>Tokita, Masayoshi ; Sato, Hiromu</creatorcontrib><description>Reptilian skull morphology is highly diverse and broadly categorized into three categories based on the number and position of the temporal fenestrations: anapsid, synapsid, and diapsid. According to recent phylogenetic analysis, temporal fenestrations evolved twice independently in amniotes, once in Synapsida and once in Diapsida. Although functional aspects underlying the evolution of tetrapod temporal fenestrations have been well investigated, few studies have investigated the developmental mechanisms responsible for differences in the pattern of temporal skull region. To determine what these mechanisms might be, we first examined how the five temporal bones develop by comparing embryonic cranial osteogenesis between representative extant reptilian species. The pattern of temporal skull region may depend on differences in temporal bone growth rate and growth direction during ontogeny. Next, we compared the histogenesis patterns and the expression of two key osteogenic genes, Runx2 and Msx2, in the temporal region of the representative reptilian embryos. Our comparative analyses suggest that the embryonic histological condition of the domain where temporal fenestrations would form predicts temporal skull morphology in adults and regulatory modifications of Runx2 and Msx2 expression in osteogenic mesenchymal precursor cells are likely involved in generating morphological diversity in the temporal skull region of reptiles. Reptilian skull morphology is highly diverse but few studies have investigated the developmental mechanisms creating its diversity. To gain insights into the mechanisms, in this review article, we compared the pattern of cranial osteogenesis, temporal region histogenesis, and the expression of two key osteogenic genes, Runx2 and Msx2, in the temporal region between representative extant reptilian embryos.</description><identifier>ISSN: 1520-541X</identifier><identifier>EISSN: 1525-142X</identifier><identifier>DOI: 10.1111/ede.12419</identifier><identifier>PMID: 36250751</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Animals ; bone ; Bone growth ; Cbfa-1 protein ; Comparative analysis ; Core Binding Factor Alpha 1 Subunit - metabolism ; dermatocranium ; Embryos ; Growth rate ; Histogenesis ; Mesenchyme ; Morphology ; Msx2 protein ; Ontogeny ; Osteogenesis ; Phylogeny ; Reptiles ; Skull ; Skull - anatomy &amp; histology ; Temporal bone ; Temporal Lobe - metabolism</subject><ispartof>Evolution &amp; development, 2023-01, Vol.25 (1), p.15-31</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3499-1bb200855290bfaf34c072fbb2667452840225eba3ec6eeb56713876fc3f49533</citedby><cites>FETCH-LOGICAL-c3499-1bb200855290bfaf34c072fbb2667452840225eba3ec6eeb56713876fc3f49533</cites><orcidid>0000-0001-9215-5170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fede.12419$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fede.12419$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36250751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tokita, Masayoshi</creatorcontrib><creatorcontrib>Sato, Hiromu</creatorcontrib><title>Creating morphological diversity in reptilian temporal skull region: A review of potential developmental mechanisms</title><title>Evolution &amp; development</title><addtitle>Evol Dev</addtitle><description>Reptilian skull morphology is highly diverse and broadly categorized into three categories based on the number and position of the temporal fenestrations: anapsid, synapsid, and diapsid. According to recent phylogenetic analysis, temporal fenestrations evolved twice independently in amniotes, once in Synapsida and once in Diapsida. Although functional aspects underlying the evolution of tetrapod temporal fenestrations have been well investigated, few studies have investigated the developmental mechanisms responsible for differences in the pattern of temporal skull region. To determine what these mechanisms might be, we first examined how the five temporal bones develop by comparing embryonic cranial osteogenesis between representative extant reptilian species. The pattern of temporal skull region may depend on differences in temporal bone growth rate and growth direction during ontogeny. Next, we compared the histogenesis patterns and the expression of two key osteogenic genes, Runx2 and Msx2, in the temporal region of the representative reptilian embryos. Our comparative analyses suggest that the embryonic histological condition of the domain where temporal fenestrations would form predicts temporal skull morphology in adults and regulatory modifications of Runx2 and Msx2 expression in osteogenic mesenchymal precursor cells are likely involved in generating morphological diversity in the temporal skull region of reptiles. Reptilian skull morphology is highly diverse but few studies have investigated the developmental mechanisms creating its diversity. To gain insights into the mechanisms, in this review article, we compared the pattern of cranial osteogenesis, temporal region histogenesis, and the expression of two key osteogenic genes, Runx2 and Msx2, in the temporal region between representative extant reptilian embryos.</description><subject>Animals</subject><subject>bone</subject><subject>Bone growth</subject><subject>Cbfa-1 protein</subject><subject>Comparative analysis</subject><subject>Core Binding Factor Alpha 1 Subunit - metabolism</subject><subject>dermatocranium</subject><subject>Embryos</subject><subject>Growth rate</subject><subject>Histogenesis</subject><subject>Mesenchyme</subject><subject>Morphology</subject><subject>Msx2 protein</subject><subject>Ontogeny</subject><subject>Osteogenesis</subject><subject>Phylogeny</subject><subject>Reptiles</subject><subject>Skull</subject><subject>Skull - anatomy &amp; histology</subject><subject>Temporal bone</subject><subject>Temporal Lobe - metabolism</subject><issn>1520-541X</issn><issn>1525-142X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kctOwzAQRS0EoqWw4AdQJDawSOtn0rCrSnlIldiA1F3kpJPWxYmDnbTq3-M-YIGEN57xHB2NfBG6JrhP_BnAHPqEcpKcoC4RVISE09npvsah4GTWQRfOrTAmMafJOeqwiAocC9JFbmxBNqpaBKWx9dJos1C51MFcrcE61WwDVQUW6kZpJauggbI21s_dZ6u1HyyUqR6Cka_WCjaBKYLaNFA1aueANWhTl771XQn5UlbKle4SnRVSO7g63j308TR5H7-E07fn1_FoGuaMJ0lIsoxiPBSCJjgrZMF4jmNa-NcoirmgQ44pFZBJBnkEkIkoJmwYR0XOCp4Ixnro7uCtrflqwTVpqVwOWssKTOtSGlPBOeV0h97-QVemtZXfzlMR8xwWiafuD1RujXMWirS2qpR2mxKc7pJIfRLpPgnP3hyNbVbC_Jf8-XoPDA7ARmnY_m9KJ4-Tg_IbjySTIw</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Tokita, Masayoshi</creator><creator>Sato, Hiromu</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9215-5170</orcidid></search><sort><creationdate>202301</creationdate><title>Creating morphological diversity in reptilian temporal skull region: A review of potential developmental mechanisms</title><author>Tokita, Masayoshi ; Sato, Hiromu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3499-1bb200855290bfaf34c072fbb2667452840225eba3ec6eeb56713876fc3f49533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>bone</topic><topic>Bone growth</topic><topic>Cbfa-1 protein</topic><topic>Comparative analysis</topic><topic>Core Binding Factor Alpha 1 Subunit - metabolism</topic><topic>dermatocranium</topic><topic>Embryos</topic><topic>Growth rate</topic><topic>Histogenesis</topic><topic>Mesenchyme</topic><topic>Morphology</topic><topic>Msx2 protein</topic><topic>Ontogeny</topic><topic>Osteogenesis</topic><topic>Phylogeny</topic><topic>Reptiles</topic><topic>Skull</topic><topic>Skull - anatomy &amp; histology</topic><topic>Temporal bone</topic><topic>Temporal Lobe - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tokita, Masayoshi</creatorcontrib><creatorcontrib>Sato, Hiromu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Evolution &amp; development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tokita, Masayoshi</au><au>Sato, Hiromu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creating morphological diversity in reptilian temporal skull region: A review of potential developmental mechanisms</atitle><jtitle>Evolution &amp; development</jtitle><addtitle>Evol Dev</addtitle><date>2023-01</date><risdate>2023</risdate><volume>25</volume><issue>1</issue><spage>15</spage><epage>31</epage><pages>15-31</pages><issn>1520-541X</issn><eissn>1525-142X</eissn><abstract>Reptilian skull morphology is highly diverse and broadly categorized into three categories based on the number and position of the temporal fenestrations: anapsid, synapsid, and diapsid. According to recent phylogenetic analysis, temporal fenestrations evolved twice independently in amniotes, once in Synapsida and once in Diapsida. Although functional aspects underlying the evolution of tetrapod temporal fenestrations have been well investigated, few studies have investigated the developmental mechanisms responsible for differences in the pattern of temporal skull region. To determine what these mechanisms might be, we first examined how the five temporal bones develop by comparing embryonic cranial osteogenesis between representative extant reptilian species. The pattern of temporal skull region may depend on differences in temporal bone growth rate and growth direction during ontogeny. Next, we compared the histogenesis patterns and the expression of two key osteogenic genes, Runx2 and Msx2, in the temporal region of the representative reptilian embryos. Our comparative analyses suggest that the embryonic histological condition of the domain where temporal fenestrations would form predicts temporal skull morphology in adults and regulatory modifications of Runx2 and Msx2 expression in osteogenic mesenchymal precursor cells are likely involved in generating morphological diversity in the temporal skull region of reptiles. Reptilian skull morphology is highly diverse but few studies have investigated the developmental mechanisms creating its diversity. To gain insights into the mechanisms, in this review article, we compared the pattern of cranial osteogenesis, temporal region histogenesis, and the expression of two key osteogenic genes, Runx2 and Msx2, in the temporal region between representative extant reptilian embryos.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>36250751</pmid><doi>10.1111/ede.12419</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9215-5170</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1520-541X
ispartof Evolution & development, 2023-01, Vol.25 (1), p.15-31
issn 1520-541X
1525-142X
language eng
recordid cdi_proquest_miscellaneous_2725442423
source MEDLINE; Wiley Online Library All Journals
subjects Animals
bone
Bone growth
Cbfa-1 protein
Comparative analysis
Core Binding Factor Alpha 1 Subunit - metabolism
dermatocranium
Embryos
Growth rate
Histogenesis
Mesenchyme
Morphology
Msx2 protein
Ontogeny
Osteogenesis
Phylogeny
Reptiles
Skull
Skull - anatomy & histology
Temporal bone
Temporal Lobe - metabolism
title Creating morphological diversity in reptilian temporal skull region: A review of potential developmental mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creating%20morphological%20diversity%20in%20reptilian%20temporal%20skull%20region:%20A%20review%20of%20potential%20developmental%20mechanisms&rft.jtitle=Evolution%20&%20development&rft.au=Tokita,%20Masayoshi&rft.date=2023-01&rft.volume=25&rft.issue=1&rft.spage=15&rft.epage=31&rft.pages=15-31&rft.issn=1520-541X&rft.eissn=1525-142X&rft_id=info:doi/10.1111/ede.12419&rft_dat=%3Cproquest_cross%3E2763254059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2763254059&rft_id=info:pmid/36250751&rfr_iscdi=true