Conductive and Ultrastable Covalent Organic Framework/Carbon Hybrid as an Ideal Electrocatalytic Platform

Developing covalent organic frameworks (COFs) with good electrical conductivity is essential to widen their range of practical applications. Thermal annealing is known to be a facile approach for enhancing conductivity. However, at higher temperatures, most COFs undergo amorphization and/or thermal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2022-11, Vol.144 (43), p.19973-19980
Hauptverfasser: Seo, Jeong-Min, Noh, Hyuk-Jun, Jeon, Jong-Pil, Kim, Hyeongjun, Han, Gao-Feng, Kwak, Sang Kyu, Jeong, Hu Young, Wang, Lianli, Li, Feng, Baek, Jong-Beom
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19980
container_issue 43
container_start_page 19973
container_title Journal of the American Chemical Society
container_volume 144
creator Seo, Jeong-Min
Noh, Hyuk-Jun
Jeon, Jong-Pil
Kim, Hyeongjun
Han, Gao-Feng
Kwak, Sang Kyu
Jeong, Hu Young
Wang, Lianli
Li, Feng
Baek, Jong-Beom
description Developing covalent organic frameworks (COFs) with good electrical conductivity is essential to widen their range of practical applications. Thermal annealing is known to be a facile approach for enhancing conductivity. However, at higher temperatures, most COFs undergo amorphization and/or thermal degradation because of the lack of linker rigidity and physicochemical stability. Here, we report the synthesis of a conductive benzoxazole-linked COF/carbon hybrid material (BCOF-600C) by simple thermal annealing. The fused-aromatic benzoxazole and biphenyl building units endow the resulting COF with excellent physicochemical stability against high temperatures and strong acids/bases. This allows heat treatment to further enhance electrical conductivity with minimal structural alteration. The robust crystalline structure with periodically incorporated nitrogen atoms allowed platinum (Pt) atoms to be atomically integrated into the channel walls of BCOF-600C. The resulting electrocatalyst with well-defined active sites exhibited superior catalytic performance toward hydrogen evolution in acidic media.
doi_str_mv 10.1021/jacs.2c08344
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2725201704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725201704</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-f00bb0df0903e899f2129cee78138422ae79d3ee4aa9babbff0fb5517bd74ae53</originalsourceid><addsrcrecordid>eNptkLFOwzAQhi0EEqWw8QAeGQg9OwlJRhS1tFKlMsAcnZ0zSnHiYrtFfXtSgcTCdLrT9__SfYzdCngQIMVsizo8SA1lmmVnbCJyCUku5OM5mwCATIryMb1kVyFsxzWTpZiwrnZDu9exOxDHoeVvNnoMEZUlXrsDWhoi3_h3HDrNFx57-nL-Y1ajV27gy6PyXcsxjFm-agktn1vS0TuNEe0xjqEXi9E431-zC4M20M3vnLK3xfy1XibrzfOqflonmIKIiQFQCloDFaRUVpWRQlaaqChFWmZSIhVVmxJliJVCpYwBo_JcFKotMqQ8nbK7n96dd597CrHpu6DJWhzI7UMjCzl6EQVkI3r_g2rvQvBkmp3vevTHRkBzMtqcjDa_Rv-aT8et2_th_ON_9BvzaXim</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725201704</pqid></control><display><type>article</type><title>Conductive and Ultrastable Covalent Organic Framework/Carbon Hybrid as an Ideal Electrocatalytic Platform</title><source>ACS Publications</source><creator>Seo, Jeong-Min ; Noh, Hyuk-Jun ; Jeon, Jong-Pil ; Kim, Hyeongjun ; Han, Gao-Feng ; Kwak, Sang Kyu ; Jeong, Hu Young ; Wang, Lianli ; Li, Feng ; Baek, Jong-Beom</creator><creatorcontrib>Seo, Jeong-Min ; Noh, Hyuk-Jun ; Jeon, Jong-Pil ; Kim, Hyeongjun ; Han, Gao-Feng ; Kwak, Sang Kyu ; Jeong, Hu Young ; Wang, Lianli ; Li, Feng ; Baek, Jong-Beom</creatorcontrib><description>Developing covalent organic frameworks (COFs) with good electrical conductivity is essential to widen their range of practical applications. Thermal annealing is known to be a facile approach for enhancing conductivity. However, at higher temperatures, most COFs undergo amorphization and/or thermal degradation because of the lack of linker rigidity and physicochemical stability. Here, we report the synthesis of a conductive benzoxazole-linked COF/carbon hybrid material (BCOF-600C) by simple thermal annealing. The fused-aromatic benzoxazole and biphenyl building units endow the resulting COF with excellent physicochemical stability against high temperatures and strong acids/bases. This allows heat treatment to further enhance electrical conductivity with minimal structural alteration. The robust crystalline structure with periodically incorporated nitrogen atoms allowed platinum (Pt) atoms to be atomically integrated into the channel walls of BCOF-600C. The resulting electrocatalyst with well-defined active sites exhibited superior catalytic performance toward hydrogen evolution in acidic media.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.2c08344</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2022-11, Vol.144 (43), p.19973-19980</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-f00bb0df0903e899f2129cee78138422ae79d3ee4aa9babbff0fb5517bd74ae53</citedby><cites>FETCH-LOGICAL-a301t-f00bb0df0903e899f2129cee78138422ae79d3ee4aa9babbff0fb5517bd74ae53</cites><orcidid>0000-0002-9891-8260 ; 0000-0003-4785-2326 ; 0000-0002-5550-5298 ; 0000-0001-8615-8201 ; 0000-0002-0332-1534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.2c08344$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.2c08344$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids></links><search><creatorcontrib>Seo, Jeong-Min</creatorcontrib><creatorcontrib>Noh, Hyuk-Jun</creatorcontrib><creatorcontrib>Jeon, Jong-Pil</creatorcontrib><creatorcontrib>Kim, Hyeongjun</creatorcontrib><creatorcontrib>Han, Gao-Feng</creatorcontrib><creatorcontrib>Kwak, Sang Kyu</creatorcontrib><creatorcontrib>Jeong, Hu Young</creatorcontrib><creatorcontrib>Wang, Lianli</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Baek, Jong-Beom</creatorcontrib><title>Conductive and Ultrastable Covalent Organic Framework/Carbon Hybrid as an Ideal Electrocatalytic Platform</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Developing covalent organic frameworks (COFs) with good electrical conductivity is essential to widen their range of practical applications. Thermal annealing is known to be a facile approach for enhancing conductivity. However, at higher temperatures, most COFs undergo amorphization and/or thermal degradation because of the lack of linker rigidity and physicochemical stability. Here, we report the synthesis of a conductive benzoxazole-linked COF/carbon hybrid material (BCOF-600C) by simple thermal annealing. The fused-aromatic benzoxazole and biphenyl building units endow the resulting COF with excellent physicochemical stability against high temperatures and strong acids/bases. This allows heat treatment to further enhance electrical conductivity with minimal structural alteration. The robust crystalline structure with periodically incorporated nitrogen atoms allowed platinum (Pt) atoms to be atomically integrated into the channel walls of BCOF-600C. The resulting electrocatalyst with well-defined active sites exhibited superior catalytic performance toward hydrogen evolution in acidic media.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkLFOwzAQhi0EEqWw8QAeGQg9OwlJRhS1tFKlMsAcnZ0zSnHiYrtFfXtSgcTCdLrT9__SfYzdCngQIMVsizo8SA1lmmVnbCJyCUku5OM5mwCATIryMb1kVyFsxzWTpZiwrnZDu9exOxDHoeVvNnoMEZUlXrsDWhoi3_h3HDrNFx57-nL-Y1ajV27gy6PyXcsxjFm-agktn1vS0TuNEe0xjqEXi9E431-zC4M20M3vnLK3xfy1XibrzfOqflonmIKIiQFQCloDFaRUVpWRQlaaqChFWmZSIhVVmxJliJVCpYwBo_JcFKotMqQ8nbK7n96dd597CrHpu6DJWhzI7UMjCzl6EQVkI3r_g2rvQvBkmp3vevTHRkBzMtqcjDa_Rv-aT8et2_th_ON_9BvzaXim</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Seo, Jeong-Min</creator><creator>Noh, Hyuk-Jun</creator><creator>Jeon, Jong-Pil</creator><creator>Kim, Hyeongjun</creator><creator>Han, Gao-Feng</creator><creator>Kwak, Sang Kyu</creator><creator>Jeong, Hu Young</creator><creator>Wang, Lianli</creator><creator>Li, Feng</creator><creator>Baek, Jong-Beom</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9891-8260</orcidid><orcidid>https://orcid.org/0000-0003-4785-2326</orcidid><orcidid>https://orcid.org/0000-0002-5550-5298</orcidid><orcidid>https://orcid.org/0000-0001-8615-8201</orcidid><orcidid>https://orcid.org/0000-0002-0332-1534</orcidid></search><sort><creationdate>20221102</creationdate><title>Conductive and Ultrastable Covalent Organic Framework/Carbon Hybrid as an Ideal Electrocatalytic Platform</title><author>Seo, Jeong-Min ; Noh, Hyuk-Jun ; Jeon, Jong-Pil ; Kim, Hyeongjun ; Han, Gao-Feng ; Kwak, Sang Kyu ; Jeong, Hu Young ; Wang, Lianli ; Li, Feng ; Baek, Jong-Beom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-f00bb0df0903e899f2129cee78138422ae79d3ee4aa9babbff0fb5517bd74ae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Jeong-Min</creatorcontrib><creatorcontrib>Noh, Hyuk-Jun</creatorcontrib><creatorcontrib>Jeon, Jong-Pil</creatorcontrib><creatorcontrib>Kim, Hyeongjun</creatorcontrib><creatorcontrib>Han, Gao-Feng</creatorcontrib><creatorcontrib>Kwak, Sang Kyu</creatorcontrib><creatorcontrib>Jeong, Hu Young</creatorcontrib><creatorcontrib>Wang, Lianli</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Baek, Jong-Beom</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Jeong-Min</au><au>Noh, Hyuk-Jun</au><au>Jeon, Jong-Pil</au><au>Kim, Hyeongjun</au><au>Han, Gao-Feng</au><au>Kwak, Sang Kyu</au><au>Jeong, Hu Young</au><au>Wang, Lianli</au><au>Li, Feng</au><au>Baek, Jong-Beom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive and Ultrastable Covalent Organic Framework/Carbon Hybrid as an Ideal Electrocatalytic Platform</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2022-11-02</date><risdate>2022</risdate><volume>144</volume><issue>43</issue><spage>19973</spage><epage>19980</epage><pages>19973-19980</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Developing covalent organic frameworks (COFs) with good electrical conductivity is essential to widen their range of practical applications. Thermal annealing is known to be a facile approach for enhancing conductivity. However, at higher temperatures, most COFs undergo amorphization and/or thermal degradation because of the lack of linker rigidity and physicochemical stability. Here, we report the synthesis of a conductive benzoxazole-linked COF/carbon hybrid material (BCOF-600C) by simple thermal annealing. The fused-aromatic benzoxazole and biphenyl building units endow the resulting COF with excellent physicochemical stability against high temperatures and strong acids/bases. This allows heat treatment to further enhance electrical conductivity with minimal structural alteration. The robust crystalline structure with periodically incorporated nitrogen atoms allowed platinum (Pt) atoms to be atomically integrated into the channel walls of BCOF-600C. The resulting electrocatalyst with well-defined active sites exhibited superior catalytic performance toward hydrogen evolution in acidic media.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.2c08344</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9891-8260</orcidid><orcidid>https://orcid.org/0000-0003-4785-2326</orcidid><orcidid>https://orcid.org/0000-0002-5550-5298</orcidid><orcidid>https://orcid.org/0000-0001-8615-8201</orcidid><orcidid>https://orcid.org/0000-0002-0332-1534</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2022-11, Vol.144 (43), p.19973-19980
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2725201704
source ACS Publications
title Conductive and Ultrastable Covalent Organic Framework/Carbon Hybrid as an Ideal Electrocatalytic Platform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20and%20Ultrastable%20Covalent%20Organic%20Framework/Carbon%20Hybrid%20as%20an%20Ideal%20Electrocatalytic%20Platform&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Seo,%20Jeong-Min&rft.date=2022-11-02&rft.volume=144&rft.issue=43&rft.spage=19973&rft.epage=19980&rft.pages=19973-19980&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.2c08344&rft_dat=%3Cproquest_cross%3E2725201704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725201704&rft_id=info:pmid/&rfr_iscdi=true