Conductive and Ultrastable Covalent Organic Framework/Carbon Hybrid as an Ideal Electrocatalytic Platform
Developing covalent organic frameworks (COFs) with good electrical conductivity is essential to widen their range of practical applications. Thermal annealing is known to be a facile approach for enhancing conductivity. However, at higher temperatures, most COFs undergo amorphization and/or thermal...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2022-11, Vol.144 (43), p.19973-19980 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19980 |
---|---|
container_issue | 43 |
container_start_page | 19973 |
container_title | Journal of the American Chemical Society |
container_volume | 144 |
creator | Seo, Jeong-Min Noh, Hyuk-Jun Jeon, Jong-Pil Kim, Hyeongjun Han, Gao-Feng Kwak, Sang Kyu Jeong, Hu Young Wang, Lianli Li, Feng Baek, Jong-Beom |
description | Developing covalent organic frameworks (COFs) with good electrical conductivity is essential to widen their range of practical applications. Thermal annealing is known to be a facile approach for enhancing conductivity. However, at higher temperatures, most COFs undergo amorphization and/or thermal degradation because of the lack of linker rigidity and physicochemical stability. Here, we report the synthesis of a conductive benzoxazole-linked COF/carbon hybrid material (BCOF-600C) by simple thermal annealing. The fused-aromatic benzoxazole and biphenyl building units endow the resulting COF with excellent physicochemical stability against high temperatures and strong acids/bases. This allows heat treatment to further enhance electrical conductivity with minimal structural alteration. The robust crystalline structure with periodically incorporated nitrogen atoms allowed platinum (Pt) atoms to be atomically integrated into the channel walls of BCOF-600C. The resulting electrocatalyst with well-defined active sites exhibited superior catalytic performance toward hydrogen evolution in acidic media. |
doi_str_mv | 10.1021/jacs.2c08344 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2725201704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725201704</sourcerecordid><originalsourceid>FETCH-LOGICAL-a301t-f00bb0df0903e899f2129cee78138422ae79d3ee4aa9babbff0fb5517bd74ae53</originalsourceid><addsrcrecordid>eNptkLFOwzAQhi0EEqWw8QAeGQg9OwlJRhS1tFKlMsAcnZ0zSnHiYrtFfXtSgcTCdLrT9__SfYzdCngQIMVsizo8SA1lmmVnbCJyCUku5OM5mwCATIryMb1kVyFsxzWTpZiwrnZDu9exOxDHoeVvNnoMEZUlXrsDWhoi3_h3HDrNFx57-nL-Y1ajV27gy6PyXcsxjFm-agktn1vS0TuNEe0xjqEXi9E431-zC4M20M3vnLK3xfy1XibrzfOqflonmIKIiQFQCloDFaRUVpWRQlaaqChFWmZSIhVVmxJliJVCpYwBo_JcFKotMqQ8nbK7n96dd597CrHpu6DJWhzI7UMjCzl6EQVkI3r_g2rvQvBkmp3vevTHRkBzMtqcjDa_Rv-aT8et2_th_ON_9BvzaXim</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725201704</pqid></control><display><type>article</type><title>Conductive and Ultrastable Covalent Organic Framework/Carbon Hybrid as an Ideal Electrocatalytic Platform</title><source>ACS Publications</source><creator>Seo, Jeong-Min ; Noh, Hyuk-Jun ; Jeon, Jong-Pil ; Kim, Hyeongjun ; Han, Gao-Feng ; Kwak, Sang Kyu ; Jeong, Hu Young ; Wang, Lianli ; Li, Feng ; Baek, Jong-Beom</creator><creatorcontrib>Seo, Jeong-Min ; Noh, Hyuk-Jun ; Jeon, Jong-Pil ; Kim, Hyeongjun ; Han, Gao-Feng ; Kwak, Sang Kyu ; Jeong, Hu Young ; Wang, Lianli ; Li, Feng ; Baek, Jong-Beom</creatorcontrib><description>Developing covalent organic frameworks (COFs) with good electrical conductivity is essential to widen their range of practical applications. Thermal annealing is known to be a facile approach for enhancing conductivity. However, at higher temperatures, most COFs undergo amorphization and/or thermal degradation because of the lack of linker rigidity and physicochemical stability. Here, we report the synthesis of a conductive benzoxazole-linked COF/carbon hybrid material (BCOF-600C) by simple thermal annealing. The fused-aromatic benzoxazole and biphenyl building units endow the resulting COF with excellent physicochemical stability against high temperatures and strong acids/bases. This allows heat treatment to further enhance electrical conductivity with minimal structural alteration. The robust crystalline structure with periodically incorporated nitrogen atoms allowed platinum (Pt) atoms to be atomically integrated into the channel walls of BCOF-600C. The resulting electrocatalyst with well-defined active sites exhibited superior catalytic performance toward hydrogen evolution in acidic media.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.2c08344</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2022-11, Vol.144 (43), p.19973-19980</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a301t-f00bb0df0903e899f2129cee78138422ae79d3ee4aa9babbff0fb5517bd74ae53</citedby><cites>FETCH-LOGICAL-a301t-f00bb0df0903e899f2129cee78138422ae79d3ee4aa9babbff0fb5517bd74ae53</cites><orcidid>0000-0002-9891-8260 ; 0000-0003-4785-2326 ; 0000-0002-5550-5298 ; 0000-0001-8615-8201 ; 0000-0002-0332-1534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.2c08344$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.2c08344$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids></links><search><creatorcontrib>Seo, Jeong-Min</creatorcontrib><creatorcontrib>Noh, Hyuk-Jun</creatorcontrib><creatorcontrib>Jeon, Jong-Pil</creatorcontrib><creatorcontrib>Kim, Hyeongjun</creatorcontrib><creatorcontrib>Han, Gao-Feng</creatorcontrib><creatorcontrib>Kwak, Sang Kyu</creatorcontrib><creatorcontrib>Jeong, Hu Young</creatorcontrib><creatorcontrib>Wang, Lianli</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Baek, Jong-Beom</creatorcontrib><title>Conductive and Ultrastable Covalent Organic Framework/Carbon Hybrid as an Ideal Electrocatalytic Platform</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Developing covalent organic frameworks (COFs) with good electrical conductivity is essential to widen their range of practical applications. Thermal annealing is known to be a facile approach for enhancing conductivity. However, at higher temperatures, most COFs undergo amorphization and/or thermal degradation because of the lack of linker rigidity and physicochemical stability. Here, we report the synthesis of a conductive benzoxazole-linked COF/carbon hybrid material (BCOF-600C) by simple thermal annealing. The fused-aromatic benzoxazole and biphenyl building units endow the resulting COF with excellent physicochemical stability against high temperatures and strong acids/bases. This allows heat treatment to further enhance electrical conductivity with minimal structural alteration. The robust crystalline structure with periodically incorporated nitrogen atoms allowed platinum (Pt) atoms to be atomically integrated into the channel walls of BCOF-600C. The resulting electrocatalyst with well-defined active sites exhibited superior catalytic performance toward hydrogen evolution in acidic media.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkLFOwzAQhi0EEqWw8QAeGQg9OwlJRhS1tFKlMsAcnZ0zSnHiYrtFfXtSgcTCdLrT9__SfYzdCngQIMVsizo8SA1lmmVnbCJyCUku5OM5mwCATIryMb1kVyFsxzWTpZiwrnZDu9exOxDHoeVvNnoMEZUlXrsDWhoi3_h3HDrNFx57-nL-Y1ajV27gy6PyXcsxjFm-agktn1vS0TuNEe0xjqEXi9E431-zC4M20M3vnLK3xfy1XibrzfOqflonmIKIiQFQCloDFaRUVpWRQlaaqChFWmZSIhVVmxJliJVCpYwBo_JcFKotMqQ8nbK7n96dd597CrHpu6DJWhzI7UMjCzl6EQVkI3r_g2rvQvBkmp3vevTHRkBzMtqcjDa_Rv-aT8et2_th_ON_9BvzaXim</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Seo, Jeong-Min</creator><creator>Noh, Hyuk-Jun</creator><creator>Jeon, Jong-Pil</creator><creator>Kim, Hyeongjun</creator><creator>Han, Gao-Feng</creator><creator>Kwak, Sang Kyu</creator><creator>Jeong, Hu Young</creator><creator>Wang, Lianli</creator><creator>Li, Feng</creator><creator>Baek, Jong-Beom</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9891-8260</orcidid><orcidid>https://orcid.org/0000-0003-4785-2326</orcidid><orcidid>https://orcid.org/0000-0002-5550-5298</orcidid><orcidid>https://orcid.org/0000-0001-8615-8201</orcidid><orcidid>https://orcid.org/0000-0002-0332-1534</orcidid></search><sort><creationdate>20221102</creationdate><title>Conductive and Ultrastable Covalent Organic Framework/Carbon Hybrid as an Ideal Electrocatalytic Platform</title><author>Seo, Jeong-Min ; Noh, Hyuk-Jun ; Jeon, Jong-Pil ; Kim, Hyeongjun ; Han, Gao-Feng ; Kwak, Sang Kyu ; Jeong, Hu Young ; Wang, Lianli ; Li, Feng ; Baek, Jong-Beom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a301t-f00bb0df0903e899f2129cee78138422ae79d3ee4aa9babbff0fb5517bd74ae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Jeong-Min</creatorcontrib><creatorcontrib>Noh, Hyuk-Jun</creatorcontrib><creatorcontrib>Jeon, Jong-Pil</creatorcontrib><creatorcontrib>Kim, Hyeongjun</creatorcontrib><creatorcontrib>Han, Gao-Feng</creatorcontrib><creatorcontrib>Kwak, Sang Kyu</creatorcontrib><creatorcontrib>Jeong, Hu Young</creatorcontrib><creatorcontrib>Wang, Lianli</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Baek, Jong-Beom</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Jeong-Min</au><au>Noh, Hyuk-Jun</au><au>Jeon, Jong-Pil</au><au>Kim, Hyeongjun</au><au>Han, Gao-Feng</au><au>Kwak, Sang Kyu</au><au>Jeong, Hu Young</au><au>Wang, Lianli</au><au>Li, Feng</au><au>Baek, Jong-Beom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive and Ultrastable Covalent Organic Framework/Carbon Hybrid as an Ideal Electrocatalytic Platform</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2022-11-02</date><risdate>2022</risdate><volume>144</volume><issue>43</issue><spage>19973</spage><epage>19980</epage><pages>19973-19980</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Developing covalent organic frameworks (COFs) with good electrical conductivity is essential to widen their range of practical applications. Thermal annealing is known to be a facile approach for enhancing conductivity. However, at higher temperatures, most COFs undergo amorphization and/or thermal degradation because of the lack of linker rigidity and physicochemical stability. Here, we report the synthesis of a conductive benzoxazole-linked COF/carbon hybrid material (BCOF-600C) by simple thermal annealing. The fused-aromatic benzoxazole and biphenyl building units endow the resulting COF with excellent physicochemical stability against high temperatures and strong acids/bases. This allows heat treatment to further enhance electrical conductivity with minimal structural alteration. The robust crystalline structure with periodically incorporated nitrogen atoms allowed platinum (Pt) atoms to be atomically integrated into the channel walls of BCOF-600C. The resulting electrocatalyst with well-defined active sites exhibited superior catalytic performance toward hydrogen evolution in acidic media.</abstract><pub>American Chemical Society</pub><doi>10.1021/jacs.2c08344</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9891-8260</orcidid><orcidid>https://orcid.org/0000-0003-4785-2326</orcidid><orcidid>https://orcid.org/0000-0002-5550-5298</orcidid><orcidid>https://orcid.org/0000-0001-8615-8201</orcidid><orcidid>https://orcid.org/0000-0002-0332-1534</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2022-11, Vol.144 (43), p.19973-19980 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_2725201704 |
source | ACS Publications |
title | Conductive and Ultrastable Covalent Organic Framework/Carbon Hybrid as an Ideal Electrocatalytic Platform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20and%20Ultrastable%20Covalent%20Organic%20Framework/Carbon%20Hybrid%20as%20an%20Ideal%20Electrocatalytic%20Platform&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Seo,%20Jeong-Min&rft.date=2022-11-02&rft.volume=144&rft.issue=43&rft.spage=19973&rft.epage=19980&rft.pages=19973-19980&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.2c08344&rft_dat=%3Cproquest_cross%3E2725201704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725201704&rft_id=info:pmid/&rfr_iscdi=true |