Acceleration of Cathode Interfacial Kinetics by Liquid Organosulfides in Lithium Metal Batteries
Great efforts have been made to tackle the issues of the shuttle effect and kinetics hysteresis in lithium‐sulfur (Li−S) battery, but few on tuning the reaction path of sulfur cathode. Herein, we report a strategy to replace inorganic sulfur with liquid organosulfide and construct a novel liquid‐liq...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2022-12, Vol.61 (49), p.e202213160-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 49 |
container_start_page | e202213160 |
container_title | Angewandte Chemie International Edition |
container_volume | 61 |
creator | Lv, Xucheng Yang, Qilong Zhang, Xie Song, Jiahan Guo, Wei Wang, Qi |
description | Great efforts have been made to tackle the issues of the shuttle effect and kinetics hysteresis in lithium‐sulfur (Li−S) battery, but few on tuning the reaction path of sulfur cathode. Herein, we report a strategy to replace inorganic sulfur with liquid organosulfide and construct a novel liquid‐liquid interface between cathode and electrolyte, which effectively inhibits the shuttle effect and simplifies the solid‐liquid‐solid conversion reaction to only liquid‐solid process, thus greatly improving the reaction kinetics. The Li|PTS half‐cell exhibits excellent cycling stability at 0.5 C, with a capacity retention of 64.9 % after 750 cycles. The Li|PTS pouch cell with a high PTS loading of 3.1 g delivers a maximum capacity of 997 mAh and maintains 82.1 % of initial capacity after 50 cycles at the current of 100 mA. This work enriches the reaction mechanism of Li−S batteries and provides new insights for the development of interphase chemistry in the design of cathodes.
In view of the poor electronic/ionic conductivity of the solid‐liquid interface in Li−S battery, a strategy of replacing sulfur with liquid organosulfide (PTS) and constructing a novel liquid‐liquid interface between cathode and electrolyte using LHCE is reported, which effectively inhibits the shuttle effect and simplifies the reaction mechanism to only liquid‐solid process, thus obtaining a good reaction kinetics and cycling stability. |
doi_str_mv | 10.1002/anie.202213160 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2725194614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740677230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3500-fd768da62e6cd35e07c0a6abc2a356d6e242e499cd12147965d03856166502823</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqWwMltiYUnxR2wnY6n4qCh0gTm49oW6SpPWdoT673FVBBIL0510z3O6exG6pGRECWE3unUwYoQxyqkkR2hABaMZV4ofpz7nPFOFoKfoLIRV4ouCyAF6HxsDDXgdXdfirsYTHZedBTxtI_haG6cb_ORaiM4EvNjhmdv2zuK5_9BtF_qmdhYCdm0axKXr1_gZYlJudUy-g3COTmrdBLj4rkP0dn_3OnnMZvOH6WQ8ywwXhGS1VbKwWjKQxnIBRBmipV4YprmQVgLLGeRlaSxlNFelFJbwQkgqpUi_MD5E14e9G99tewixWruQXmt0C10fKqaYoGUuUxBDdPUHXXW9b9N1icqJVIpxkqjRgTK-C8FDXW28W2u_qyip9oFX-8Crn8CTUB6ET9fA7h-6Gr9M737dL-4ng10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740677230</pqid></control><display><type>article</type><title>Acceleration of Cathode Interfacial Kinetics by Liquid Organosulfides in Lithium Metal Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lv, Xucheng ; Yang, Qilong ; Zhang, Xie ; Song, Jiahan ; Guo, Wei ; Wang, Qi</creator><creatorcontrib>Lv, Xucheng ; Yang, Qilong ; Zhang, Xie ; Song, Jiahan ; Guo, Wei ; Wang, Qi</creatorcontrib><description>Great efforts have been made to tackle the issues of the shuttle effect and kinetics hysteresis in lithium‐sulfur (Li−S) battery, but few on tuning the reaction path of sulfur cathode. Herein, we report a strategy to replace inorganic sulfur with liquid organosulfide and construct a novel liquid‐liquid interface between cathode and electrolyte, which effectively inhibits the shuttle effect and simplifies the solid‐liquid‐solid conversion reaction to only liquid‐solid process, thus greatly improving the reaction kinetics. The Li|PTS half‐cell exhibits excellent cycling stability at 0.5 C, with a capacity retention of 64.9 % after 750 cycles. The Li|PTS pouch cell with a high PTS loading of 3.1 g delivers a maximum capacity of 997 mAh and maintains 82.1 % of initial capacity after 50 cycles at the current of 100 mA. This work enriches the reaction mechanism of Li−S batteries and provides new insights for the development of interphase chemistry in the design of cathodes.
In view of the poor electronic/ionic conductivity of the solid‐liquid interface in Li−S battery, a strategy of replacing sulfur with liquid organosulfide (PTS) and constructing a novel liquid‐liquid interface between cathode and electrolyte using LHCE is reported, which effectively inhibits the shuttle effect and simplifies the reaction mechanism to only liquid‐solid process, thus obtaining a good reaction kinetics and cycling stability.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202213160</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acceleration ; Cathodes ; Interfacial Engineering ; Kinetics ; Lithium ; Lithium batteries ; Lithium sulfur batteries ; Localized High-Concentration Electrolyte ; Organosulfides ; Pouch Cell ; Reaction Kinetics ; Reaction mechanisms ; Sulfur</subject><ispartof>Angewandte Chemie International Edition, 2022-12, Vol.61 (49), p.e202213160-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3500-fd768da62e6cd35e07c0a6abc2a356d6e242e499cd12147965d03856166502823</citedby><cites>FETCH-LOGICAL-c3500-fd768da62e6cd35e07c0a6abc2a356d6e242e499cd12147965d03856166502823</cites><orcidid>0000-0003-4125-6443 ; 0000-0002-2246-1401 ; 0000-0001-5085-4125 ; 0000-0002-7149-2802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202213160$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202213160$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lv, Xucheng</creatorcontrib><creatorcontrib>Yang, Qilong</creatorcontrib><creatorcontrib>Zhang, Xie</creatorcontrib><creatorcontrib>Song, Jiahan</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><title>Acceleration of Cathode Interfacial Kinetics by Liquid Organosulfides in Lithium Metal Batteries</title><title>Angewandte Chemie International Edition</title><description>Great efforts have been made to tackle the issues of the shuttle effect and kinetics hysteresis in lithium‐sulfur (Li−S) battery, but few on tuning the reaction path of sulfur cathode. Herein, we report a strategy to replace inorganic sulfur with liquid organosulfide and construct a novel liquid‐liquid interface between cathode and electrolyte, which effectively inhibits the shuttle effect and simplifies the solid‐liquid‐solid conversion reaction to only liquid‐solid process, thus greatly improving the reaction kinetics. The Li|PTS half‐cell exhibits excellent cycling stability at 0.5 C, with a capacity retention of 64.9 % after 750 cycles. The Li|PTS pouch cell with a high PTS loading of 3.1 g delivers a maximum capacity of 997 mAh and maintains 82.1 % of initial capacity after 50 cycles at the current of 100 mA. This work enriches the reaction mechanism of Li−S batteries and provides new insights for the development of interphase chemistry in the design of cathodes.
In view of the poor electronic/ionic conductivity of the solid‐liquid interface in Li−S battery, a strategy of replacing sulfur with liquid organosulfide (PTS) and constructing a novel liquid‐liquid interface between cathode and electrolyte using LHCE is reported, which effectively inhibits the shuttle effect and simplifies the reaction mechanism to only liquid‐solid process, thus obtaining a good reaction kinetics and cycling stability.</description><subject>Acceleration</subject><subject>Cathodes</subject><subject>Interfacial Engineering</subject><subject>Kinetics</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium sulfur batteries</subject><subject>Localized High-Concentration Electrolyte</subject><subject>Organosulfides</subject><subject>Pouch Cell</subject><subject>Reaction Kinetics</subject><subject>Reaction mechanisms</subject><subject>Sulfur</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqWwMltiYUnxR2wnY6n4qCh0gTm49oW6SpPWdoT673FVBBIL0510z3O6exG6pGRECWE3unUwYoQxyqkkR2hABaMZV4ofpz7nPFOFoKfoLIRV4ouCyAF6HxsDDXgdXdfirsYTHZedBTxtI_haG6cb_ORaiM4EvNjhmdv2zuK5_9BtF_qmdhYCdm0axKXr1_gZYlJudUy-g3COTmrdBLj4rkP0dn_3OnnMZvOH6WQ8ywwXhGS1VbKwWjKQxnIBRBmipV4YprmQVgLLGeRlaSxlNFelFJbwQkgqpUi_MD5E14e9G99tewixWruQXmt0C10fKqaYoGUuUxBDdPUHXXW9b9N1icqJVIpxkqjRgTK-C8FDXW28W2u_qyip9oFX-8Crn8CTUB6ET9fA7h-6Gr9M737dL-4ng10</recordid><startdate>20221205</startdate><enddate>20221205</enddate><creator>Lv, Xucheng</creator><creator>Yang, Qilong</creator><creator>Zhang, Xie</creator><creator>Song, Jiahan</creator><creator>Guo, Wei</creator><creator>Wang, Qi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4125-6443</orcidid><orcidid>https://orcid.org/0000-0002-2246-1401</orcidid><orcidid>https://orcid.org/0000-0001-5085-4125</orcidid><orcidid>https://orcid.org/0000-0002-7149-2802</orcidid></search><sort><creationdate>20221205</creationdate><title>Acceleration of Cathode Interfacial Kinetics by Liquid Organosulfides in Lithium Metal Batteries</title><author>Lv, Xucheng ; Yang, Qilong ; Zhang, Xie ; Song, Jiahan ; Guo, Wei ; Wang, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3500-fd768da62e6cd35e07c0a6abc2a356d6e242e499cd12147965d03856166502823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration</topic><topic>Cathodes</topic><topic>Interfacial Engineering</topic><topic>Kinetics</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium sulfur batteries</topic><topic>Localized High-Concentration Electrolyte</topic><topic>Organosulfides</topic><topic>Pouch Cell</topic><topic>Reaction Kinetics</topic><topic>Reaction mechanisms</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Xucheng</creatorcontrib><creatorcontrib>Yang, Qilong</creatorcontrib><creatorcontrib>Zhang, Xie</creatorcontrib><creatorcontrib>Song, Jiahan</creatorcontrib><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Xucheng</au><au>Yang, Qilong</au><au>Zhang, Xie</au><au>Song, Jiahan</au><au>Guo, Wei</au><au>Wang, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acceleration of Cathode Interfacial Kinetics by Liquid Organosulfides in Lithium Metal Batteries</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2022-12-05</date><risdate>2022</risdate><volume>61</volume><issue>49</issue><spage>e202213160</spage><epage>n/a</epage><pages>e202213160-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Great efforts have been made to tackle the issues of the shuttle effect and kinetics hysteresis in lithium‐sulfur (Li−S) battery, but few on tuning the reaction path of sulfur cathode. Herein, we report a strategy to replace inorganic sulfur with liquid organosulfide and construct a novel liquid‐liquid interface between cathode and electrolyte, which effectively inhibits the shuttle effect and simplifies the solid‐liquid‐solid conversion reaction to only liquid‐solid process, thus greatly improving the reaction kinetics. The Li|PTS half‐cell exhibits excellent cycling stability at 0.5 C, with a capacity retention of 64.9 % after 750 cycles. The Li|PTS pouch cell with a high PTS loading of 3.1 g delivers a maximum capacity of 997 mAh and maintains 82.1 % of initial capacity after 50 cycles at the current of 100 mA. This work enriches the reaction mechanism of Li−S batteries and provides new insights for the development of interphase chemistry in the design of cathodes.
In view of the poor electronic/ionic conductivity of the solid‐liquid interface in Li−S battery, a strategy of replacing sulfur with liquid organosulfide (PTS) and constructing a novel liquid‐liquid interface between cathode and electrolyte using LHCE is reported, which effectively inhibits the shuttle effect and simplifies the reaction mechanism to only liquid‐solid process, thus obtaining a good reaction kinetics and cycling stability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202213160</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4125-6443</orcidid><orcidid>https://orcid.org/0000-0002-2246-1401</orcidid><orcidid>https://orcid.org/0000-0001-5085-4125</orcidid><orcidid>https://orcid.org/0000-0002-7149-2802</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2022-12, Vol.61 (49), p.e202213160-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2725194614 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acceleration Cathodes Interfacial Engineering Kinetics Lithium Lithium batteries Lithium sulfur batteries Localized High-Concentration Electrolyte Organosulfides Pouch Cell Reaction Kinetics Reaction mechanisms Sulfur |
title | Acceleration of Cathode Interfacial Kinetics by Liquid Organosulfides in Lithium Metal Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acceleration%20of%20Cathode%20Interfacial%20Kinetics%20by%20Liquid%20Organosulfides%20in%20Lithium%20Metal%20Batteries&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Lv,%20Xucheng&rft.date=2022-12-05&rft.volume=61&rft.issue=49&rft.spage=e202213160&rft.epage=n/a&rft.pages=e202213160-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202213160&rft_dat=%3Cproquest_cross%3E2740677230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2740677230&rft_id=info:pmid/&rfr_iscdi=true |