An Inexact Newton Method for Fully Coupled Solution of the Navier–Stokes Equations with Heat and Mass Transport

The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Computational Physics 1997-10, Vol.137 (1), p.155-185
Hauptverfasser: Shadid, John N., Tuminaro, Ray S., Walker, Homer F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue 1
container_start_page 155
container_title Journal of Computational Physics
container_volume 137
creator Shadid, John N.
Tuminaro, Ray S.
Walker, Homer F.
description The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript we focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context we use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier–Stokes equations with heat and mass transport. Our discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.
doi_str_mv 10.1006/jcph.1997.5798
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_27251827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999197957983</els_id><sourcerecordid>27251827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-585a6b56b8c2286583825a178a732f6890f9e0c4966ddf7967b1f35dc28079853</originalsourceid><addsrcrecordid>eNp1kLtOHDEUhq2ISFkgbWqnSTcb24NvJVpBQOJSQGrL6zmjMRnsWduThS7vkDfMk2SspaU6xfn-o_98CH2hZE0JEd-f3DSsqdZyzaVWH9CKEk0aJqk4QitCGG201vQTOs75iRCi-Jlaod15wNcBXqwr-A72JQZ8C2WIHe5jwpfzOL7iTZynETr8EMe5-IWIPS4D4Dv720P69-fvQ4m_IOOL3WzrPuO9LwO-AluwDR2-tTnjx2RDnmIqp-hjb8cMn9_mCfp5efG4uWpu7n9cb85vGteqtjRccSu2XGyVY0wJrlrFuKVSWdmyXihNeg3EnWkhuq6XWsgt7VveOabI8j5vT9DXw92YizfZ-QJucDEEcMUIqiivzLcDM6W4myEX8-yzg3G0AeKcDZOMU8XkAq4PoEsx5wS9mZJ_tunVUGKqfVPtm2rfVPtLQB0CsLxYNdUGEBx0PtUCXfTvRf8D-S2MMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27251827</pqid></control><display><type>article</type><title>An Inexact Newton Method for Fully Coupled Solution of the Navier–Stokes Equations with Heat and Mass Transport</title><source>Elsevier ScienceDirect Journals</source><creator>Shadid, John N. ; Tuminaro, Ray S. ; Walker, Homer F.</creator><creatorcontrib>Shadid, John N. ; Tuminaro, Ray S. ; Walker, Homer F.</creatorcontrib><description>The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript we focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context we use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier–Stokes equations with heat and mass transport. Our discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1006/jcph.1997.5798</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES ; FINITE ELEMENT METHOD ; HEAT TRANSFER ; MASS TRANSFER ; MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS ; NAVIER-STOKES EQUATIONS ; NEWTON METHOD ; PHYSICS</subject><ispartof>Journal of Computational Physics, 1997-10, Vol.137 (1), p.155-185</ispartof><rights>1997 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-585a6b56b8c2286583825a178a732f6890f9e0c4966ddf7967b1f35dc28079853</citedby><cites>FETCH-LOGICAL-c383t-585a6b56b8c2286583825a178a732f6890f9e0c4966ddf7967b1f35dc28079853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999197957983$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/618155$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shadid, John N.</creatorcontrib><creatorcontrib>Tuminaro, Ray S.</creatorcontrib><creatorcontrib>Walker, Homer F.</creatorcontrib><title>An Inexact Newton Method for Fully Coupled Solution of the Navier–Stokes Equations with Heat and Mass Transport</title><title>Journal of Computational Physics</title><description>The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript we focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context we use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier–Stokes equations with heat and mass transport. Our discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.</description><subject>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES</subject><subject>FINITE ELEMENT METHOD</subject><subject>HEAT TRANSFER</subject><subject>MASS TRANSFER</subject><subject>MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS</subject><subject>NAVIER-STOKES EQUATIONS</subject><subject>NEWTON METHOD</subject><subject>PHYSICS</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOHDEUhq2ISFkgbWqnSTcb24NvJVpBQOJSQGrL6zmjMRnsWduThS7vkDfMk2SspaU6xfn-o_98CH2hZE0JEd-f3DSsqdZyzaVWH9CKEk0aJqk4QitCGG201vQTOs75iRCi-Jlaod15wNcBXqwr-A72JQZ8C2WIHe5jwpfzOL7iTZynETr8EMe5-IWIPS4D4Dv720P69-fvQ4m_IOOL3WzrPuO9LwO-AluwDR2-tTnjx2RDnmIqp-hjb8cMn9_mCfp5efG4uWpu7n9cb85vGteqtjRccSu2XGyVY0wJrlrFuKVSWdmyXihNeg3EnWkhuq6XWsgt7VveOabI8j5vT9DXw92YizfZ-QJucDEEcMUIqiivzLcDM6W4myEX8-yzg3G0AeKcDZOMU8XkAq4PoEsx5wS9mZJ_tunVUGKqfVPtm2rfVPtLQB0CsLxYNdUGEBx0PtUCXfTvRf8D-S2MMw</recordid><startdate>19971001</startdate><enddate>19971001</enddate><creator>Shadid, John N.</creator><creator>Tuminaro, Ray S.</creator><creator>Walker, Homer F.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19971001</creationdate><title>An Inexact Newton Method for Fully Coupled Solution of the Navier–Stokes Equations with Heat and Mass Transport</title><author>Shadid, John N. ; Tuminaro, Ray S. ; Walker, Homer F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-585a6b56b8c2286583825a178a732f6890f9e0c4966ddf7967b1f35dc28079853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES</topic><topic>FINITE ELEMENT METHOD</topic><topic>HEAT TRANSFER</topic><topic>MASS TRANSFER</topic><topic>MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS</topic><topic>NAVIER-STOKES EQUATIONS</topic><topic>NEWTON METHOD</topic><topic>PHYSICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shadid, John N.</creatorcontrib><creatorcontrib>Tuminaro, Ray S.</creatorcontrib><creatorcontrib>Walker, Homer F.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of Computational Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shadid, John N.</au><au>Tuminaro, Ray S.</au><au>Walker, Homer F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Inexact Newton Method for Fully Coupled Solution of the Navier–Stokes Equations with Heat and Mass Transport</atitle><jtitle>Journal of Computational Physics</jtitle><date>1997-10-01</date><risdate>1997</risdate><volume>137</volume><issue>1</issue><spage>155</spage><epage>185</epage><pages>155-185</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript we focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context we use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier–Stokes equations with heat and mass transport. Our discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1006/jcph.1997.5798</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of Computational Physics, 1997-10, Vol.137 (1), p.155-185
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_27251827
source Elsevier ScienceDirect Journals
subjects ENGINEERING NOT INCLUDED IN OTHER CATEGORIES
FINITE ELEMENT METHOD
HEAT TRANSFER
MASS TRANSFER
MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS
NAVIER-STOKES EQUATIONS
NEWTON METHOD
PHYSICS
title An Inexact Newton Method for Fully Coupled Solution of the Navier–Stokes Equations with Heat and Mass Transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Inexact%20Newton%20Method%20for%20Fully%20Coupled%20Solution%20of%20the%20Navier%E2%80%93Stokes%20Equations%20with%20Heat%20and%20Mass%20Transport&rft.jtitle=Journal%20of%20Computational%20Physics&rft.au=Shadid,%20John%20N.&rft.date=1997-10-01&rft.volume=137&rft.issue=1&rft.spage=155&rft.epage=185&rft.pages=155-185&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1006/jcph.1997.5798&rft_dat=%3Cproquest_osti_%3E27251827%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27251827&rft_id=info:pmid/&rft_els_id=S0021999197957983&rfr_iscdi=true