An Inexact Newton Method for Fully Coupled Solution of the Navier–Stokes Equations with Heat and Mass Transport
The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs....
Gespeichert in:
Veröffentlicht in: | Journal of Computational Physics 1997-10, Vol.137 (1), p.155-185 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | 1 |
container_start_page | 155 |
container_title | Journal of Computational Physics |
container_volume | 137 |
creator | Shadid, John N. Tuminaro, Ray S. Walker, Homer F. |
description | The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript we focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context we use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier–Stokes equations with heat and mass transport. Our discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations. |
doi_str_mv | 10.1006/jcph.1997.5798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_27251827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999197957983</els_id><sourcerecordid>27251827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-585a6b56b8c2286583825a178a732f6890f9e0c4966ddf7967b1f35dc28079853</originalsourceid><addsrcrecordid>eNp1kLtOHDEUhq2ISFkgbWqnSTcb24NvJVpBQOJSQGrL6zmjMRnsWduThS7vkDfMk2SspaU6xfn-o_98CH2hZE0JEd-f3DSsqdZyzaVWH9CKEk0aJqk4QitCGG201vQTOs75iRCi-Jlaod15wNcBXqwr-A72JQZ8C2WIHe5jwpfzOL7iTZynETr8EMe5-IWIPS4D4Dv720P69-fvQ4m_IOOL3WzrPuO9LwO-AluwDR2-tTnjx2RDnmIqp-hjb8cMn9_mCfp5efG4uWpu7n9cb85vGteqtjRccSu2XGyVY0wJrlrFuKVSWdmyXihNeg3EnWkhuq6XWsgt7VveOabI8j5vT9DXw92YizfZ-QJucDEEcMUIqiivzLcDM6W4myEX8-yzg3G0AeKcDZOMU8XkAq4PoEsx5wS9mZJ_tunVUGKqfVPtm2rfVPtLQB0CsLxYNdUGEBx0PtUCXfTvRf8D-S2MMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27251827</pqid></control><display><type>article</type><title>An Inexact Newton Method for Fully Coupled Solution of the Navier–Stokes Equations with Heat and Mass Transport</title><source>Elsevier ScienceDirect Journals</source><creator>Shadid, John N. ; Tuminaro, Ray S. ; Walker, Homer F.</creator><creatorcontrib>Shadid, John N. ; Tuminaro, Ray S. ; Walker, Homer F.</creatorcontrib><description>The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript we focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context we use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier–Stokes equations with heat and mass transport. Our discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1006/jcph.1997.5798</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES ; FINITE ELEMENT METHOD ; HEAT TRANSFER ; MASS TRANSFER ; MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS ; NAVIER-STOKES EQUATIONS ; NEWTON METHOD ; PHYSICS</subject><ispartof>Journal of Computational Physics, 1997-10, Vol.137 (1), p.155-185</ispartof><rights>1997 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-585a6b56b8c2286583825a178a732f6890f9e0c4966ddf7967b1f35dc28079853</citedby><cites>FETCH-LOGICAL-c383t-585a6b56b8c2286583825a178a732f6890f9e0c4966ddf7967b1f35dc28079853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999197957983$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/618155$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shadid, John N.</creatorcontrib><creatorcontrib>Tuminaro, Ray S.</creatorcontrib><creatorcontrib>Walker, Homer F.</creatorcontrib><title>An Inexact Newton Method for Fully Coupled Solution of the Navier–Stokes Equations with Heat and Mass Transport</title><title>Journal of Computational Physics</title><description>The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript we focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context we use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier–Stokes equations with heat and mass transport. Our discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.</description><subject>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES</subject><subject>FINITE ELEMENT METHOD</subject><subject>HEAT TRANSFER</subject><subject>MASS TRANSFER</subject><subject>MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS</subject><subject>NAVIER-STOKES EQUATIONS</subject><subject>NEWTON METHOD</subject><subject>PHYSICS</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOHDEUhq2ISFkgbWqnSTcb24NvJVpBQOJSQGrL6zmjMRnsWduThS7vkDfMk2SspaU6xfn-o_98CH2hZE0JEd-f3DSsqdZyzaVWH9CKEk0aJqk4QitCGG201vQTOs75iRCi-Jlaod15wNcBXqwr-A72JQZ8C2WIHe5jwpfzOL7iTZynETr8EMe5-IWIPS4D4Dv720P69-fvQ4m_IOOL3WzrPuO9LwO-AluwDR2-tTnjx2RDnmIqp-hjb8cMn9_mCfp5efG4uWpu7n9cb85vGteqtjRccSu2XGyVY0wJrlrFuKVSWdmyXihNeg3EnWkhuq6XWsgt7VveOabI8j5vT9DXw92YizfZ-QJucDEEcMUIqiivzLcDM6W4myEX8-yzg3G0AeKcDZOMU8XkAq4PoEsx5wS9mZJ_tunVUGKqfVPtm2rfVPtLQB0CsLxYNdUGEBx0PtUCXfTvRf8D-S2MMw</recordid><startdate>19971001</startdate><enddate>19971001</enddate><creator>Shadid, John N.</creator><creator>Tuminaro, Ray S.</creator><creator>Walker, Homer F.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>19971001</creationdate><title>An Inexact Newton Method for Fully Coupled Solution of the Navier–Stokes Equations with Heat and Mass Transport</title><author>Shadid, John N. ; Tuminaro, Ray S. ; Walker, Homer F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-585a6b56b8c2286583825a178a732f6890f9e0c4966ddf7967b1f35dc28079853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ENGINEERING NOT INCLUDED IN OTHER CATEGORIES</topic><topic>FINITE ELEMENT METHOD</topic><topic>HEAT TRANSFER</topic><topic>MASS TRANSFER</topic><topic>MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS</topic><topic>NAVIER-STOKES EQUATIONS</topic><topic>NEWTON METHOD</topic><topic>PHYSICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shadid, John N.</creatorcontrib><creatorcontrib>Tuminaro, Ray S.</creatorcontrib><creatorcontrib>Walker, Homer F.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of Computational Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shadid, John N.</au><au>Tuminaro, Ray S.</au><au>Walker, Homer F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Inexact Newton Method for Fully Coupled Solution of the Navier–Stokes Equations with Heat and Mass Transport</atitle><jtitle>Journal of Computational Physics</jtitle><date>1997-10-01</date><risdate>1997</risdate><volume>137</volume><issue>1</issue><spage>155</spage><epage>185</epage><pages>155-185</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript we focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context we use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier–Stokes equations with heat and mass transport. Our discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1006/jcph.1997.5798</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of Computational Physics, 1997-10, Vol.137 (1), p.155-185 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_27251827 |
source | Elsevier ScienceDirect Journals |
subjects | ENGINEERING NOT INCLUDED IN OTHER CATEGORIES FINITE ELEMENT METHOD HEAT TRANSFER MASS TRANSFER MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS NAVIER-STOKES EQUATIONS NEWTON METHOD PHYSICS |
title | An Inexact Newton Method for Fully Coupled Solution of the Navier–Stokes Equations with Heat and Mass Transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Inexact%20Newton%20Method%20for%20Fully%20Coupled%20Solution%20of%20the%20Navier%E2%80%93Stokes%20Equations%20with%20Heat%20and%20Mass%20Transport&rft.jtitle=Journal%20of%20Computational%20Physics&rft.au=Shadid,%20John%20N.&rft.date=1997-10-01&rft.volume=137&rft.issue=1&rft.spage=155&rft.epage=185&rft.pages=155-185&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1006/jcph.1997.5798&rft_dat=%3Cproquest_osti_%3E27251827%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27251827&rft_id=info:pmid/&rft_els_id=S0021999197957983&rfr_iscdi=true |