Numerical simulations of autoignition in turbulent mixing flows

Two-dimensional direct numerical simulations have been performed of the autoignition of (i) laminar and turbulent shearless mixing layers between fuel and hotter air, (ii) thin slabs of fuel exposed to air from both sides, and (iii) homogeneous stagnant adiabatic mixtures. It has been found that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 1997-04, Vol.109 (1), p.198-223
Hauptverfasser: Mastorakos, E., Baritaud, T.A., Poinsot, T.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 1
container_start_page 198
container_title Combustion and flame
container_volume 109
creator Mastorakos, E.
Baritaud, T.A.
Poinsot, T.J.
description Two-dimensional direct numerical simulations have been performed of the autoignition of (i) laminar and turbulent shearless mixing layers between fuel and hotter air, (ii) thin slabs of fuel exposed to air from both sides, and (iii) homogeneous stagnant adiabatic mixtures. It has been found that the time for the first appearance of an ignition site is almost independent of the turbulence time scale, varies little in individual realisations of the same flow, decreases with partial premixing, is shorter in turbulent than in laminar flows, and decreases with decreasing width of the fuel stream. The autoignition time in the turbulent flows in longer than the ignition delay time of stagnant homogeneous mixtures and this implies that the heat losses due to mixture fraction gradients associated with mixture inhomogeneities increase the autoignition time. It has also been found that ignition always occurs at a well-defined mixture fraction f MR, which is accurately predicted by previous laminar flow analyses to depend only on the fuel and oxidant temperatures and the activation energy. As a measure of the heat losses of the heat-producing regions that eventually autoignite, the time evolution of the scalar dissipation rate, conditional on the most reactive mixture fraction, is examined and used to explain successfully all the observed trends of autoignition time with turbulent time scale, flow length scale, and partial premixing. The implications of these findings for modelling and for the interpretation of experimental data are discussed.
doi_str_mv 10.1016/S0010-2180(96)00149-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27249624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218096001496</els_id><sourcerecordid>27249624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-27ef99d9dfb7a45424d08597c515b3270f6a893b3f5da07c10d034b76ea6f8443</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiDiB5W853NqUjxC4oe1HPIZpMS2U1qsuvHv3fbSq-ehhmed4Z5ADhF8ApBxK9fIESwxKiCF5Jfjg2VJd8DE8QYL7HEaB9MdsghOMr5HUIoKCETMHsaOpu80W2RfTe0uvcx5CK6Qg999Mvg14PCh6IfUj20NvRF5799WBaujV_5GBw43WZ78len4O3u9nX-UC6e7x_nN4vS0Ir1JRbWSdnIxtVCU0YxbWDFpDAMsZpgAR3XlSQ1cazRUBgEG0hoLbjV3FWUkik43-5dpfgx2Nyrzmdj21YHG4essMBUcrwG2RY0KeacrFOr5DudfhSCaq1LbXSptQsludroUnzMnf0d0Hm04ZIOxuddGHNMKgRHbLbF7Pjsp7dJZeNtMLbxyZpeNdH_c-gXTy5-ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27249624</pqid></control><display><type>article</type><title>Numerical simulations of autoignition in turbulent mixing flows</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mastorakos, E. ; Baritaud, T.A. ; Poinsot, T.J.</creator><creatorcontrib>Mastorakos, E. ; Baritaud, T.A. ; Poinsot, T.J.</creatorcontrib><description>Two-dimensional direct numerical simulations have been performed of the autoignition of (i) laminar and turbulent shearless mixing layers between fuel and hotter air, (ii) thin slabs of fuel exposed to air from both sides, and (iii) homogeneous stagnant adiabatic mixtures. It has been found that the time for the first appearance of an ignition site is almost independent of the turbulence time scale, varies little in individual realisations of the same flow, decreases with partial premixing, is shorter in turbulent than in laminar flows, and decreases with decreasing width of the fuel stream. The autoignition time in the turbulent flows in longer than the ignition delay time of stagnant homogeneous mixtures and this implies that the heat losses due to mixture fraction gradients associated with mixture inhomogeneities increase the autoignition time. It has also been found that ignition always occurs at a well-defined mixture fraction f MR, which is accurately predicted by previous laminar flow analyses to depend only on the fuel and oxidant temperatures and the activation energy. As a measure of the heat losses of the heat-producing regions that eventually autoignite, the time evolution of the scalar dissipation rate, conditional on the most reactive mixture fraction, is examined and used to explain successfully all the observed trends of autoignition time with turbulent time scale, flow length scale, and partial premixing. The implications of these findings for modelling and for the interpretation of experimental data are discussed.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/S0010-2180(96)00149-6</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied sciences ; Combustion. Flame ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Theoretical studies ; Theoretical studies. Data and constants. Metering</subject><ispartof>Combustion and flame, 1997-04, Vol.109 (1), p.198-223</ispartof><rights>1997</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-27ef99d9dfb7a45424d08597c515b3270f6a893b3f5da07c10d034b76ea6f8443</citedby><cites>FETCH-LOGICAL-c485t-27ef99d9dfb7a45424d08597c515b3270f6a893b3f5da07c10d034b76ea6f8443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0010-2180(96)00149-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2623810$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mastorakos, E.</creatorcontrib><creatorcontrib>Baritaud, T.A.</creatorcontrib><creatorcontrib>Poinsot, T.J.</creatorcontrib><title>Numerical simulations of autoignition in turbulent mixing flows</title><title>Combustion and flame</title><description>Two-dimensional direct numerical simulations have been performed of the autoignition of (i) laminar and turbulent shearless mixing layers between fuel and hotter air, (ii) thin slabs of fuel exposed to air from both sides, and (iii) homogeneous stagnant adiabatic mixtures. It has been found that the time for the first appearance of an ignition site is almost independent of the turbulence time scale, varies little in individual realisations of the same flow, decreases with partial premixing, is shorter in turbulent than in laminar flows, and decreases with decreasing width of the fuel stream. The autoignition time in the turbulent flows in longer than the ignition delay time of stagnant homogeneous mixtures and this implies that the heat losses due to mixture fraction gradients associated with mixture inhomogeneities increase the autoignition time. It has also been found that ignition always occurs at a well-defined mixture fraction f MR, which is accurately predicted by previous laminar flow analyses to depend only on the fuel and oxidant temperatures and the activation energy. As a measure of the heat losses of the heat-producing regions that eventually autoignite, the time evolution of the scalar dissipation rate, conditional on the most reactive mixture fraction, is examined and used to explain successfully all the observed trends of autoignition time with turbulent time scale, flow length scale, and partial premixing. The implications of these findings for modelling and for the interpretation of experimental data are discussed.</description><subject>Applied sciences</subject><subject>Combustion. Flame</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Theoretical studies</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiDiB5W853NqUjxC4oe1HPIZpMS2U1qsuvHv3fbSq-ehhmed4Z5ADhF8ApBxK9fIESwxKiCF5Jfjg2VJd8DE8QYL7HEaB9MdsghOMr5HUIoKCETMHsaOpu80W2RfTe0uvcx5CK6Qg999Mvg14PCh6IfUj20NvRF5799WBaujV_5GBw43WZ78len4O3u9nX-UC6e7x_nN4vS0Ir1JRbWSdnIxtVCU0YxbWDFpDAMsZpgAR3XlSQ1cazRUBgEG0hoLbjV3FWUkik43-5dpfgx2Nyrzmdj21YHG4essMBUcrwG2RY0KeacrFOr5DudfhSCaq1LbXSptQsludroUnzMnf0d0Hm04ZIOxuddGHNMKgRHbLbF7Pjsp7dJZeNtMLbxyZpeNdH_c-gXTy5-ZA</recordid><startdate>19970401</startdate><enddate>19970401</enddate><creator>Mastorakos, E.</creator><creator>Baritaud, T.A.</creator><creator>Poinsot, T.J.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19970401</creationdate><title>Numerical simulations of autoignition in turbulent mixing flows</title><author>Mastorakos, E. ; Baritaud, T.A. ; Poinsot, T.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-27ef99d9dfb7a45424d08597c515b3270f6a893b3f5da07c10d034b76ea6f8443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Combustion. Flame</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Theoretical studies</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mastorakos, E.</creatorcontrib><creatorcontrib>Baritaud, T.A.</creatorcontrib><creatorcontrib>Poinsot, T.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mastorakos, E.</au><au>Baritaud, T.A.</au><au>Poinsot, T.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulations of autoignition in turbulent mixing flows</atitle><jtitle>Combustion and flame</jtitle><date>1997-04-01</date><risdate>1997</risdate><volume>109</volume><issue>1</issue><spage>198</spage><epage>223</epage><pages>198-223</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>Two-dimensional direct numerical simulations have been performed of the autoignition of (i) laminar and turbulent shearless mixing layers between fuel and hotter air, (ii) thin slabs of fuel exposed to air from both sides, and (iii) homogeneous stagnant adiabatic mixtures. It has been found that the time for the first appearance of an ignition site is almost independent of the turbulence time scale, varies little in individual realisations of the same flow, decreases with partial premixing, is shorter in turbulent than in laminar flows, and decreases with decreasing width of the fuel stream. The autoignition time in the turbulent flows in longer than the ignition delay time of stagnant homogeneous mixtures and this implies that the heat losses due to mixture fraction gradients associated with mixture inhomogeneities increase the autoignition time. It has also been found that ignition always occurs at a well-defined mixture fraction f MR, which is accurately predicted by previous laminar flow analyses to depend only on the fuel and oxidant temperatures and the activation energy. As a measure of the heat losses of the heat-producing regions that eventually autoignite, the time evolution of the scalar dissipation rate, conditional on the most reactive mixture fraction, is examined and used to explain successfully all the observed trends of autoignition time with turbulent time scale, flow length scale, and partial premixing. The implications of these findings for modelling and for the interpretation of experimental data are discussed.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/S0010-2180(96)00149-6</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 1997-04, Vol.109 (1), p.198-223
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_miscellaneous_27249624
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Combustion. Flame
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Theoretical studies
Theoretical studies. Data and constants. Metering
title Numerical simulations of autoignition in turbulent mixing flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulations%20of%20autoignition%20in%20turbulent%20mixing%20flows&rft.jtitle=Combustion%20and%20flame&rft.au=Mastorakos,%20E.&rft.date=1997-04-01&rft.volume=109&rft.issue=1&rft.spage=198&rft.epage=223&rft.pages=198-223&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/S0010-2180(96)00149-6&rft_dat=%3Cproquest_cross%3E27249624%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27249624&rft_id=info:pmid/&rft_els_id=S0010218096001496&rfr_iscdi=true