Spatiotemporal imaging of charge transfer in photocatalyst particles

The water-splitting reaction using photocatalyst particles is a promising route for solar fuel production 1 – 4 . Photo-induced charge transfer from a photocatalyst to catalytic surface sites is key in ensuring photocatalytic efficiency 5 ; however, it is challenging to understand this process, whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2022-10, Vol.610 (7931), p.296-301
Hauptverfasser: Chen, Ruotian, Ren, Zefeng, Liang, Yu, Zhang, Guanhua, Dittrich, Thomas, Liu, Runze, Liu, Yang, Zhao, Yue, Pang, Shan, An, Hongyu, Ni, Chenwei, Zhou, Panwang, Han, Keli, Fan, Fengtao, Li, Can
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 301
container_issue 7931
container_start_page 296
container_title Nature (London)
container_volume 610
creator Chen, Ruotian
Ren, Zefeng
Liang, Yu
Zhang, Guanhua
Dittrich, Thomas
Liu, Runze
Liu, Yang
Zhao, Yue
Pang, Shan
An, Hongyu
Ni, Chenwei
Zhou, Panwang
Han, Keli
Fan, Fengtao
Li, Can
description The water-splitting reaction using photocatalyst particles is a promising route for solar fuel production 1 – 4 . Photo-induced charge transfer from a photocatalyst to catalytic surface sites is key in ensuring photocatalytic efficiency 5 ; however, it is challenging to understand this process, which spans a wide spatiotemporal range from nanometres to micrometres and from femtoseconds to seconds 6 – 8 . Although the steady-state charge distribution on single photocatalyst particles has been mapped by microscopic techniques 9 – 11 , and the charge transfer dynamics in photocatalyst aggregations have been revealed by time-resolved spectroscopy 12 , 13 , spatiotemporally evolving charge transfer processes in single photocatalyst particles cannot be tracked, and their exact mechanism is unknown. Here we perform spatiotemporally resolved surface photovoltage measurements on cuprous oxide photocatalyst particles to map holistic charge transfer processes on the femtosecond to second timescale at the single-particle level. We find that photogenerated electrons are transferred to the catalytic surface quasi-ballistically through inter-facet hot electron transfer on a subpicosecond timescale, whereas photogenerated holes are transferred to a spatially separated surface and stabilized through selective trapping on a microsecond timescale. We demonstrate that these ultrafast-hot-electron-transfer and anisotropic-trapping regimes, which challenge the classical perception of a drift–diffusion model, contribute to the efficient charge separation in photocatalysis and improve photocatalytic performance. We anticipate that our findings will be used to illustrate the universality of other photoelectronic devices and facilitate the rational design of photocatalysts. Photovoltage measurements on cuprous oxide photocatalyst particles are used to spatiotemporally track the charge transfer processes on the femtosecond to second timescale at the single-particle level.
doi_str_mv 10.1038/s41586-022-05183-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2724584064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725347227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-87d48206578ea957810761ce4920b855bfc77c52040a2495869abd8ff4333e5f3</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRS0EEiHwA1Qr0dAYxm9vicJTikQB1JbjeJONNuvFdor8PQ6LhERBM9OcezVzELokcEOA6dvEidASA6UYBNEMkyM0IVxJzKVWx2gCQDUGzeQpOktpA1AwxSfo_m2wuQ3Zb4cQbVe1W7tq-1UVmsqtbVz5Kkfbp8bHqu2rYR1ycDbbbp9yNdiYW9f5dI5OGtslf_Gzp-jj8eF99oznr08vs7s5dqyWGWu15JqCFEp7W5dJQEniPK8pLLQQi8Yp5QQFDpbyujxU28VSNw1njHnRsCm6HnuHGD53PmWzbZPzXWd7H3bJUEW50BwkL-jVH3QTdrEv1x0owbiiVBWKjpSLIaXoGzPEYiDuDQFzEGtGsaaINd9iDSkhNoZSgfuVj7_V_6S-APhyehY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725347227</pqid></control><display><type>article</type><title>Spatiotemporal imaging of charge transfer in photocatalyst particles</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Chen, Ruotian ; Ren, Zefeng ; Liang, Yu ; Zhang, Guanhua ; Dittrich, Thomas ; Liu, Runze ; Liu, Yang ; Zhao, Yue ; Pang, Shan ; An, Hongyu ; Ni, Chenwei ; Zhou, Panwang ; Han, Keli ; Fan, Fengtao ; Li, Can</creator><creatorcontrib>Chen, Ruotian ; Ren, Zefeng ; Liang, Yu ; Zhang, Guanhua ; Dittrich, Thomas ; Liu, Runze ; Liu, Yang ; Zhao, Yue ; Pang, Shan ; An, Hongyu ; Ni, Chenwei ; Zhou, Panwang ; Han, Keli ; Fan, Fengtao ; Li, Can</creatorcontrib><description>The water-splitting reaction using photocatalyst particles is a promising route for solar fuel production 1 – 4 . Photo-induced charge transfer from a photocatalyst to catalytic surface sites is key in ensuring photocatalytic efficiency 5 ; however, it is challenging to understand this process, which spans a wide spatiotemporal range from nanometres to micrometres and from femtoseconds to seconds 6 – 8 . Although the steady-state charge distribution on single photocatalyst particles has been mapped by microscopic techniques 9 – 11 , and the charge transfer dynamics in photocatalyst aggregations have been revealed by time-resolved spectroscopy 12 , 13 , spatiotemporally evolving charge transfer processes in single photocatalyst particles cannot be tracked, and their exact mechanism is unknown. Here we perform spatiotemporally resolved surface photovoltage measurements on cuprous oxide photocatalyst particles to map holistic charge transfer processes on the femtosecond to second timescale at the single-particle level. We find that photogenerated electrons are transferred to the catalytic surface quasi-ballistically through inter-facet hot electron transfer on a subpicosecond timescale, whereas photogenerated holes are transferred to a spatially separated surface and stabilized through selective trapping on a microsecond timescale. We demonstrate that these ultrafast-hot-electron-transfer and anisotropic-trapping regimes, which challenge the classical perception of a drift–diffusion model, contribute to the efficient charge separation in photocatalysis and improve photocatalytic performance. We anticipate that our findings will be used to illustrate the universality of other photoelectronic devices and facilitate the rational design of photocatalysts. Photovoltage measurements on cuprous oxide photocatalyst particles are used to spatiotemporally track the charge transfer processes on the femtosecond to second timescale at the single-particle level.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05183-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/890 ; 639/4077/909/4101/4102 ; 639/638/440/947 ; 639/638/77/890 ; 639/925/930/2735 ; Charge distribution ; Charge transfer ; Copper oxides ; Defects ; Diffusion models ; Electric fields ; Electron transfer ; Energy ; Engineering ; Hot electrons ; Humanities and Social Sciences ; Incorporation ; Microscopy ; multidisciplinary ; Particle physics ; Photocatalysis ; Photocatalysts ; Population ; Science ; Science (multidisciplinary) ; Spectrum analysis ; Time ; Trapping ; Water splitting</subject><ispartof>Nature (London), 2022-10, Vol.610 (7931), p.296-301</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Nature Publishing Group Oct 13, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-87d48206578ea957810761ce4920b855bfc77c52040a2495869abd8ff4333e5f3</citedby><cites>FETCH-LOGICAL-c396t-87d48206578ea957810761ce4920b855bfc77c52040a2495869abd8ff4333e5f3</cites><orcidid>0000-0002-9828-6988 ; 0000-0002-9301-7850 ; 0000-0002-9618-7038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-022-05183-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-022-05183-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Chen, Ruotian</creatorcontrib><creatorcontrib>Ren, Zefeng</creatorcontrib><creatorcontrib>Liang, Yu</creatorcontrib><creatorcontrib>Zhang, Guanhua</creatorcontrib><creatorcontrib>Dittrich, Thomas</creatorcontrib><creatorcontrib>Liu, Runze</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Pang, Shan</creatorcontrib><creatorcontrib>An, Hongyu</creatorcontrib><creatorcontrib>Ni, Chenwei</creatorcontrib><creatorcontrib>Zhou, Panwang</creatorcontrib><creatorcontrib>Han, Keli</creatorcontrib><creatorcontrib>Fan, Fengtao</creatorcontrib><creatorcontrib>Li, Can</creatorcontrib><title>Spatiotemporal imaging of charge transfer in photocatalyst particles</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>The water-splitting reaction using photocatalyst particles is a promising route for solar fuel production 1 – 4 . Photo-induced charge transfer from a photocatalyst to catalytic surface sites is key in ensuring photocatalytic efficiency 5 ; however, it is challenging to understand this process, which spans a wide spatiotemporal range from nanometres to micrometres and from femtoseconds to seconds 6 – 8 . Although the steady-state charge distribution on single photocatalyst particles has been mapped by microscopic techniques 9 – 11 , and the charge transfer dynamics in photocatalyst aggregations have been revealed by time-resolved spectroscopy 12 , 13 , spatiotemporally evolving charge transfer processes in single photocatalyst particles cannot be tracked, and their exact mechanism is unknown. Here we perform spatiotemporally resolved surface photovoltage measurements on cuprous oxide photocatalyst particles to map holistic charge transfer processes on the femtosecond to second timescale at the single-particle level. We find that photogenerated electrons are transferred to the catalytic surface quasi-ballistically through inter-facet hot electron transfer on a subpicosecond timescale, whereas photogenerated holes are transferred to a spatially separated surface and stabilized through selective trapping on a microsecond timescale. We demonstrate that these ultrafast-hot-electron-transfer and anisotropic-trapping regimes, which challenge the classical perception of a drift–diffusion model, contribute to the efficient charge separation in photocatalysis and improve photocatalytic performance. We anticipate that our findings will be used to illustrate the universality of other photoelectronic devices and facilitate the rational design of photocatalysts. Photovoltage measurements on cuprous oxide photocatalyst particles are used to spatiotemporally track the charge transfer processes on the femtosecond to second timescale at the single-particle level.</description><subject>639/301/299/890</subject><subject>639/4077/909/4101/4102</subject><subject>639/638/440/947</subject><subject>639/638/77/890</subject><subject>639/925/930/2735</subject><subject>Charge distribution</subject><subject>Charge transfer</subject><subject>Copper oxides</subject><subject>Defects</subject><subject>Diffusion models</subject><subject>Electric fields</subject><subject>Electron transfer</subject><subject>Energy</subject><subject>Engineering</subject><subject>Hot electrons</subject><subject>Humanities and Social Sciences</subject><subject>Incorporation</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>Particle physics</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Population</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectrum analysis</subject><subject>Time</subject><subject>Trapping</subject><subject>Water splitting</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLtOAzEQRS0EEiHwA1Qr0dAYxm9vicJTikQB1JbjeJONNuvFdor8PQ6LhERBM9OcezVzELokcEOA6dvEidASA6UYBNEMkyM0IVxJzKVWx2gCQDUGzeQpOktpA1AwxSfo_m2wuQ3Zb4cQbVe1W7tq-1UVmsqtbVz5Kkfbp8bHqu2rYR1ycDbbbp9yNdiYW9f5dI5OGtslf_Gzp-jj8eF99oznr08vs7s5dqyWGWu15JqCFEp7W5dJQEniPK8pLLQQi8Yp5QQFDpbyujxU28VSNw1njHnRsCm6HnuHGD53PmWzbZPzXWd7H3bJUEW50BwkL-jVH3QTdrEv1x0owbiiVBWKjpSLIaXoGzPEYiDuDQFzEGtGsaaINd9iDSkhNoZSgfuVj7_V_6S-APhyehY</recordid><startdate>20221013</startdate><enddate>20221013</enddate><creator>Chen, Ruotian</creator><creator>Ren, Zefeng</creator><creator>Liang, Yu</creator><creator>Zhang, Guanhua</creator><creator>Dittrich, Thomas</creator><creator>Liu, Runze</creator><creator>Liu, Yang</creator><creator>Zhao, Yue</creator><creator>Pang, Shan</creator><creator>An, Hongyu</creator><creator>Ni, Chenwei</creator><creator>Zhou, Panwang</creator><creator>Han, Keli</creator><creator>Fan, Fengtao</creator><creator>Li, Can</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9828-6988</orcidid><orcidid>https://orcid.org/0000-0002-9301-7850</orcidid><orcidid>https://orcid.org/0000-0002-9618-7038</orcidid></search><sort><creationdate>20221013</creationdate><title>Spatiotemporal imaging of charge transfer in photocatalyst particles</title><author>Chen, Ruotian ; Ren, Zefeng ; Liang, Yu ; Zhang, Guanhua ; Dittrich, Thomas ; Liu, Runze ; Liu, Yang ; Zhao, Yue ; Pang, Shan ; An, Hongyu ; Ni, Chenwei ; Zhou, Panwang ; Han, Keli ; Fan, Fengtao ; Li, Can</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-87d48206578ea957810761ce4920b855bfc77c52040a2495869abd8ff4333e5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>639/301/299/890</topic><topic>639/4077/909/4101/4102</topic><topic>639/638/440/947</topic><topic>639/638/77/890</topic><topic>639/925/930/2735</topic><topic>Charge distribution</topic><topic>Charge transfer</topic><topic>Copper oxides</topic><topic>Defects</topic><topic>Diffusion models</topic><topic>Electric fields</topic><topic>Electron transfer</topic><topic>Energy</topic><topic>Engineering</topic><topic>Hot electrons</topic><topic>Humanities and Social Sciences</topic><topic>Incorporation</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>Particle physics</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Population</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectrum analysis</topic><topic>Time</topic><topic>Trapping</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ruotian</creatorcontrib><creatorcontrib>Ren, Zefeng</creatorcontrib><creatorcontrib>Liang, Yu</creatorcontrib><creatorcontrib>Zhang, Guanhua</creatorcontrib><creatorcontrib>Dittrich, Thomas</creatorcontrib><creatorcontrib>Liu, Runze</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Pang, Shan</creatorcontrib><creatorcontrib>An, Hongyu</creatorcontrib><creatorcontrib>Ni, Chenwei</creatorcontrib><creatorcontrib>Zhou, Panwang</creatorcontrib><creatorcontrib>Han, Keli</creatorcontrib><creatorcontrib>Fan, Fengtao</creatorcontrib><creatorcontrib>Li, Can</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ruotian</au><au>Ren, Zefeng</au><au>Liang, Yu</au><au>Zhang, Guanhua</au><au>Dittrich, Thomas</au><au>Liu, Runze</au><au>Liu, Yang</au><au>Zhao, Yue</au><au>Pang, Shan</au><au>An, Hongyu</au><au>Ni, Chenwei</au><au>Zhou, Panwang</au><au>Han, Keli</au><au>Fan, Fengtao</au><au>Li, Can</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal imaging of charge transfer in photocatalyst particles</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>2022-10-13</date><risdate>2022</risdate><volume>610</volume><issue>7931</issue><spage>296</spage><epage>301</epage><pages>296-301</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The water-splitting reaction using photocatalyst particles is a promising route for solar fuel production 1 – 4 . Photo-induced charge transfer from a photocatalyst to catalytic surface sites is key in ensuring photocatalytic efficiency 5 ; however, it is challenging to understand this process, which spans a wide spatiotemporal range from nanometres to micrometres and from femtoseconds to seconds 6 – 8 . Although the steady-state charge distribution on single photocatalyst particles has been mapped by microscopic techniques 9 – 11 , and the charge transfer dynamics in photocatalyst aggregations have been revealed by time-resolved spectroscopy 12 , 13 , spatiotemporally evolving charge transfer processes in single photocatalyst particles cannot be tracked, and their exact mechanism is unknown. Here we perform spatiotemporally resolved surface photovoltage measurements on cuprous oxide photocatalyst particles to map holistic charge transfer processes on the femtosecond to second timescale at the single-particle level. We find that photogenerated electrons are transferred to the catalytic surface quasi-ballistically through inter-facet hot electron transfer on a subpicosecond timescale, whereas photogenerated holes are transferred to a spatially separated surface and stabilized through selective trapping on a microsecond timescale. We demonstrate that these ultrafast-hot-electron-transfer and anisotropic-trapping regimes, which challenge the classical perception of a drift–diffusion model, contribute to the efficient charge separation in photocatalysis and improve photocatalytic performance. We anticipate that our findings will be used to illustrate the universality of other photoelectronic devices and facilitate the rational design of photocatalysts. Photovoltage measurements on cuprous oxide photocatalyst particles are used to spatiotemporally track the charge transfer processes on the femtosecond to second timescale at the single-particle level.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41586-022-05183-1</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9828-6988</orcidid><orcidid>https://orcid.org/0000-0002-9301-7850</orcidid><orcidid>https://orcid.org/0000-0002-9618-7038</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2022-10, Vol.610 (7931), p.296-301
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2724584064
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/301/299/890
639/4077/909/4101/4102
639/638/440/947
639/638/77/890
639/925/930/2735
Charge distribution
Charge transfer
Copper oxides
Defects
Diffusion models
Electric fields
Electron transfer
Energy
Engineering
Hot electrons
Humanities and Social Sciences
Incorporation
Microscopy
multidisciplinary
Particle physics
Photocatalysis
Photocatalysts
Population
Science
Science (multidisciplinary)
Spectrum analysis
Time
Trapping
Water splitting
title Spatiotemporal imaging of charge transfer in photocatalyst particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T21%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20imaging%20of%20charge%20transfer%20in%20photocatalyst%20particles&rft.jtitle=Nature%20(London)&rft.au=Chen,%20Ruotian&rft.date=2022-10-13&rft.volume=610&rft.issue=7931&rft.spage=296&rft.epage=301&rft.pages=296-301&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05183-1&rft_dat=%3Cproquest_cross%3E2725347227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725347227&rft_id=info:pmid/&rfr_iscdi=true