Theoretical Study of Oxygen Reduction Reaction Mechanism in Metal-Free Carbon Materials: Defects, Structural Flexibility, and Chemical Reaction

Metal-free carbon materials are attractive Pt-based catalyst alternatives. However, despite efforts, the reaction mechanism remains elusive. Thus, we investigated the role of defects (dopant nitrogen and carbon vacancy) on the catalytic oxygen reduction reaction in a metal-free carbon material focus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-10, Vol.16 (10), p.16394-16401
Hauptverfasser: Choi, Keunsu, Kim, Seungchul
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16401
container_issue 10
container_start_page 16394
container_title ACS nano
container_volume 16
creator Choi, Keunsu
Kim, Seungchul
description Metal-free carbon materials are attractive Pt-based catalyst alternatives. However, despite efforts, the reaction mechanism remains elusive. Thus, we investigated the role of defects (dopant nitrogen and carbon vacancy) on the catalytic oxygen reduction reaction in a metal-free carbon material focusing on the effect of structural flexibility. Crucially, defects lower the energy barrier for the sp2/sp3 transition of the carbon-centered O2-adsorption sites by releasing structural strain during the reaction. In particular, low-coordinated pyridinic-N displaces from the carbon plane to release the strain, whereas weak C–C bonds around the carbon vacancy change the bond lengths to release the strain. Defects indirectly promote the adsorption of oxygen by enhancing structural flexibility. Thus, the nonlocal structural environment is as critical as the direct interaction between adsorption sites and adsorbate in the chemical reaction. Molecular dynamics simulations reveal that pyridinic-N doping is a facile route to introduce stable catalytic active sites. Overall, our results provide a deeper understanding of chemical processes on defective carbon materials.
doi_str_mv 10.1021/acsnano.2c05607
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2724238375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724238375</sourcerecordid><originalsourceid>FETCH-LOGICAL-a240t-3637677517a5281fac8fbf538ea61a0d984dab769ebff08bef5aaeadda478df33</originalsourceid><addsrcrecordid>eNp1UE1Lw0AQDaJgrZ697lGwaXeTJrv1JtWqUCloBW9hspm1W9Js3d1A8yv8yya2evM0b5j3wbwguGR0yGjERiBdBZUZRpImKeVHQY9N4jSkIn0__sMJOw3OnFtTmnDB017wtVyhsei1hJK8-rpoiFFksWs-sCIvWNTSa9Mh2INnlCuotNsQ3S0eynBmEckUbN6dwaPVULobcocKpXeD1tW2LrVtA2Yl7nSuS-2bAYGqINMVbn6ifwPOgxPVyvHiMPvB2-x-OX0M54uHp-ntPIRoTH0YpzFPOU8YhyQSTIEUKldJLBBSBrSYiHEBOU8nmCtFRY4qAUAoChhzUag47gdXe9-tNZ81Op9ttJNYllChqV0W8WgcxSLmSUsd7anSGucsqmxr9QZskzGaddVnh-qzQ_Wt4nqvaA_Z2tS2al_5l_0N8a6Kdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724238375</pqid></control><display><type>article</type><title>Theoretical Study of Oxygen Reduction Reaction Mechanism in Metal-Free Carbon Materials: Defects, Structural Flexibility, and Chemical Reaction</title><source>American Chemical Society Journals</source><creator>Choi, Keunsu ; Kim, Seungchul</creator><creatorcontrib>Choi, Keunsu ; Kim, Seungchul</creatorcontrib><description>Metal-free carbon materials are attractive Pt-based catalyst alternatives. However, despite efforts, the reaction mechanism remains elusive. Thus, we investigated the role of defects (dopant nitrogen and carbon vacancy) on the catalytic oxygen reduction reaction in a metal-free carbon material focusing on the effect of structural flexibility. Crucially, defects lower the energy barrier for the sp2/sp3 transition of the carbon-centered O2-adsorption sites by releasing structural strain during the reaction. In particular, low-coordinated pyridinic-N displaces from the carbon plane to release the strain, whereas weak C–C bonds around the carbon vacancy change the bond lengths to release the strain. Defects indirectly promote the adsorption of oxygen by enhancing structural flexibility. Thus, the nonlocal structural environment is as critical as the direct interaction between adsorption sites and adsorbate in the chemical reaction. Molecular dynamics simulations reveal that pyridinic-N doping is a facile route to introduce stable catalytic active sites. Overall, our results provide a deeper understanding of chemical processes on defective carbon materials.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c05607</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2022-10, Vol.16 (10), p.16394-16401</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a240t-3637677517a5281fac8fbf538ea61a0d984dab769ebff08bef5aaeadda478df33</citedby><cites>FETCH-LOGICAL-a240t-3637677517a5281fac8fbf538ea61a0d984dab769ebff08bef5aaeadda478df33</cites><orcidid>0000-0001-7048-7297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.2c05607$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.2c05607$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Choi, Keunsu</creatorcontrib><creatorcontrib>Kim, Seungchul</creatorcontrib><title>Theoretical Study of Oxygen Reduction Reaction Mechanism in Metal-Free Carbon Materials: Defects, Structural Flexibility, and Chemical Reaction</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Metal-free carbon materials are attractive Pt-based catalyst alternatives. However, despite efforts, the reaction mechanism remains elusive. Thus, we investigated the role of defects (dopant nitrogen and carbon vacancy) on the catalytic oxygen reduction reaction in a metal-free carbon material focusing on the effect of structural flexibility. Crucially, defects lower the energy barrier for the sp2/sp3 transition of the carbon-centered O2-adsorption sites by releasing structural strain during the reaction. In particular, low-coordinated pyridinic-N displaces from the carbon plane to release the strain, whereas weak C–C bonds around the carbon vacancy change the bond lengths to release the strain. Defects indirectly promote the adsorption of oxygen by enhancing structural flexibility. Thus, the nonlocal structural environment is as critical as the direct interaction between adsorption sites and adsorbate in the chemical reaction. Molecular dynamics simulations reveal that pyridinic-N doping is a facile route to introduce stable catalytic active sites. Overall, our results provide a deeper understanding of chemical processes on defective carbon materials.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UE1Lw0AQDaJgrZ697lGwaXeTJrv1JtWqUCloBW9hspm1W9Js3d1A8yv8yya2evM0b5j3wbwguGR0yGjERiBdBZUZRpImKeVHQY9N4jSkIn0__sMJOw3OnFtTmnDB017wtVyhsei1hJK8-rpoiFFksWs-sCIvWNTSa9Mh2INnlCuotNsQ3S0eynBmEckUbN6dwaPVULobcocKpXeD1tW2LrVtA2Yl7nSuS-2bAYGqINMVbn6ifwPOgxPVyvHiMPvB2-x-OX0M54uHp-ntPIRoTH0YpzFPOU8YhyQSTIEUKldJLBBSBrSYiHEBOU8nmCtFRY4qAUAoChhzUag47gdXe9-tNZ81Op9ttJNYllChqV0W8WgcxSLmSUsd7anSGucsqmxr9QZskzGaddVnh-qzQ_Wt4nqvaA_Z2tS2al_5l_0N8a6Kdw</recordid><startdate>20221025</startdate><enddate>20221025</enddate><creator>Choi, Keunsu</creator><creator>Kim, Seungchul</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7048-7297</orcidid></search><sort><creationdate>20221025</creationdate><title>Theoretical Study of Oxygen Reduction Reaction Mechanism in Metal-Free Carbon Materials: Defects, Structural Flexibility, and Chemical Reaction</title><author>Choi, Keunsu ; Kim, Seungchul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a240t-3637677517a5281fac8fbf538ea61a0d984dab769ebff08bef5aaeadda478df33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Keunsu</creatorcontrib><creatorcontrib>Kim, Seungchul</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Keunsu</au><au>Kim, Seungchul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Study of Oxygen Reduction Reaction Mechanism in Metal-Free Carbon Materials: Defects, Structural Flexibility, and Chemical Reaction</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-10-25</date><risdate>2022</risdate><volume>16</volume><issue>10</issue><spage>16394</spage><epage>16401</epage><pages>16394-16401</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Metal-free carbon materials are attractive Pt-based catalyst alternatives. However, despite efforts, the reaction mechanism remains elusive. Thus, we investigated the role of defects (dopant nitrogen and carbon vacancy) on the catalytic oxygen reduction reaction in a metal-free carbon material focusing on the effect of structural flexibility. Crucially, defects lower the energy barrier for the sp2/sp3 transition of the carbon-centered O2-adsorption sites by releasing structural strain during the reaction. In particular, low-coordinated pyridinic-N displaces from the carbon plane to release the strain, whereas weak C–C bonds around the carbon vacancy change the bond lengths to release the strain. Defects indirectly promote the adsorption of oxygen by enhancing structural flexibility. Thus, the nonlocal structural environment is as critical as the direct interaction between adsorption sites and adsorbate in the chemical reaction. Molecular dynamics simulations reveal that pyridinic-N doping is a facile route to introduce stable catalytic active sites. Overall, our results provide a deeper understanding of chemical processes on defective carbon materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.2c05607</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7048-7297</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2022-10, Vol.16 (10), p.16394-16401
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2724238375
source American Chemical Society Journals
title Theoretical Study of Oxygen Reduction Reaction Mechanism in Metal-Free Carbon Materials: Defects, Structural Flexibility, and Chemical Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A45%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Study%20of%20Oxygen%20Reduction%20Reaction%20Mechanism%20in%20Metal-Free%20Carbon%20Materials:%20Defects,%20Structural%20Flexibility,%20and%20Chemical%20Reaction&rft.jtitle=ACS%20nano&rft.au=Choi,%20Keunsu&rft.date=2022-10-25&rft.volume=16&rft.issue=10&rft.spage=16394&rft.epage=16401&rft.pages=16394-16401&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c05607&rft_dat=%3Cproquest_cross%3E2724238375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2724238375&rft_id=info:pmid/&rfr_iscdi=true