Micro-aeration: an attractive strategy to facilitate anaerobic digestion
Micro-aeration can facilitate anaerobic digestion (AD) by regulating microbial communities and promoting the growth of facultative taxa, thereby increasing methane yield and stabilizing the AD process. Additionally, micro-aeration contributes to hydrogen sulfide stripping by oxidization to produce m...
Gespeichert in:
Veröffentlicht in: | Trends in biotechnology (Regular ed.) 2023-05, Vol.41 (5), p.714-726 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 726 |
---|---|
container_issue | 5 |
container_start_page | 714 |
container_title | Trends in biotechnology (Regular ed.) |
container_volume | 41 |
creator | Fu, Shanfei Lian, Shujuan Angelidaki, Irini Guo, Rongbo |
description | Micro-aeration can facilitate anaerobic digestion (AD) by regulating microbial communities and promoting the growth of facultative taxa, thereby increasing methane yield and stabilizing the AD process. Additionally, micro-aeration contributes to hydrogen sulfide stripping by oxidization to produce molecular sulfur or sulfuric acid. Although micro-aeration can positively affect AD, it must be strictly regulated to maintain an overall anaerobic environment that permits anaerobic microorganisms to thrive. Even so, obligate anaerobes, especially methanogens, could suffer from oxidative stress during micro-aeration. This review describes the applications of micro-aeration in AD and examines the cutting-edge advances in how methanogens survive under oxygen stress. Moreover, barriers and corresponding solutions are proposed to move micro-aeration technology closer to application at scale.
Micro-aeration represents a promising strategy to facilitate anaerobic digestion (AD), as it enhances hydrolysis, improves methane yield, oxidizes specific pollutants, and thereby overall improves AD.Low oxygen solubility in water, rapid consumption of dissolved oxygen by facultative microbes, the formation of microbial aggregates, and the intrinsic tolerance of some methanogenic species to oxygen are suggested as potential mechanisms for unimpaired AD process in response to oxygen exposure.Fundamental understanding of anaerobic microorganisms’ tolerance to oxygen stress and long-term pilot scale tests of effects of micro-aeration on AD are needed in order to move micro-aeration technology closer to applications. |
doi_str_mv | 10.1016/j.tibtech.2022.09.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2723813370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167779922002426</els_id><sourcerecordid>2723813370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-76b1672b943979346a356681e4b1a0a40dd5a73d87f36840430905dccf468e4d3</originalsourceid><addsrcrecordid>eNqNkU9vGyEQxVHUKnH-fIRGK_XSy24HBsOSSxRFbVIpVS_tGbHAplj2bgI4Ur59x7LbQy_tCRC_N0_zHmPvOHQcuPq46moaavQ_OwFCdGA6gP6ILXivTYtg1Bu2IE63Whtzwk5LWQEAasOP2QkqQV8cF-z-a_J5bl3MrqZ5umrc1Lhas_M1vcSm0K3Gx9emzs3ofFqnSm-CSDAPyTchPcayU56zt6Nbl3hxOM_Yj8-fvt_etw_f7r7c3jy0XmqsrVYDOYvBSDTaoFQOl0r1PMqBO3ASQlg6jaHXI6pegqRVYBm8H6Xqowx4xj7s5z7l-XlL3naTio_rtZvivC1WaIE9R9TwXyhHLhAJff8Xupq3eaJFrOgBOOUmOVHLPUWRlZLjaJ9y2rj8ajnYXSt2ZQ-t2F0rFoylVkh3eZi-HTYx_FH9roGA6z0QKbmXFLMtPsXJx5By9NWGOf3D4he4VJ4q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2800137941</pqid></control><display><type>article</type><title>Micro-aeration: an attractive strategy to facilitate anaerobic digestion</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Fu, Shanfei ; Lian, Shujuan ; Angelidaki, Irini ; Guo, Rongbo</creator><creatorcontrib>Fu, Shanfei ; Lian, Shujuan ; Angelidaki, Irini ; Guo, Rongbo</creatorcontrib><description>Micro-aeration can facilitate anaerobic digestion (AD) by regulating microbial communities and promoting the growth of facultative taxa, thereby increasing methane yield and stabilizing the AD process. Additionally, micro-aeration contributes to hydrogen sulfide stripping by oxidization to produce molecular sulfur or sulfuric acid. Although micro-aeration can positively affect AD, it must be strictly regulated to maintain an overall anaerobic environment that permits anaerobic microorganisms to thrive. Even so, obligate anaerobes, especially methanogens, could suffer from oxidative stress during micro-aeration. This review describes the applications of micro-aeration in AD and examines the cutting-edge advances in how methanogens survive under oxygen stress. Moreover, barriers and corresponding solutions are proposed to move micro-aeration technology closer to application at scale.
Micro-aeration represents a promising strategy to facilitate anaerobic digestion (AD), as it enhances hydrolysis, improves methane yield, oxidizes specific pollutants, and thereby overall improves AD.Low oxygen solubility in water, rapid consumption of dissolved oxygen by facultative microbes, the formation of microbial aggregates, and the intrinsic tolerance of some methanogenic species to oxygen are suggested as potential mechanisms for unimpaired AD process in response to oxygen exposure.Fundamental understanding of anaerobic microorganisms’ tolerance to oxygen stress and long-term pilot scale tests of effects of micro-aeration on AD are needed in order to move micro-aeration technology closer to applications.</description><identifier>ISSN: 0167-7799</identifier><identifier>EISSN: 1879-3096</identifier><identifier>DOI: 10.1016/j.tibtech.2022.09.008</identifier><identifier>PMID: 36216713</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acidification ; Aeration ; Alternative energy sources ; Anaerobes ; Anaerobic digestion ; Anaerobic microorganisms ; Anaerobiosis ; Bacteria ; barriers ; Biogas ; Bioreactors ; Cellulase ; Cellulose ; Enzymes ; Hydrogen ; Hydrogen sulfide ; Lignocellulose ; Methane ; methane production ; Methanogenic bacteria ; methanogens ; micro-aeration ; Microbial activity ; Microbiota ; Microorganisms ; Oxidation ; Oxidative stress ; Oxygen ; oxygen stress ; Respiration ; Sulfur ; Sulfuric acid ; Waste disposal</subject><ispartof>Trends in biotechnology (Regular ed.), 2023-05, Vol.41 (5), p.714-726</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><rights>2022. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-76b1672b943979346a356681e4b1a0a40dd5a73d87f36840430905dccf468e4d3</citedby><cites>FETCH-LOGICAL-c473t-76b1672b943979346a356681e4b1a0a40dd5a73d87f36840430905dccf468e4d3</cites><orcidid>0000-0002-5822-5507 ; 0000-0002-6570-1487 ; 0000-0002-9077-7731 ; 0000-0002-6357-578X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167779922002426$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36216713$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Shanfei</creatorcontrib><creatorcontrib>Lian, Shujuan</creatorcontrib><creatorcontrib>Angelidaki, Irini</creatorcontrib><creatorcontrib>Guo, Rongbo</creatorcontrib><title>Micro-aeration: an attractive strategy to facilitate anaerobic digestion</title><title>Trends in biotechnology (Regular ed.)</title><addtitle>Trends Biotechnol</addtitle><description>Micro-aeration can facilitate anaerobic digestion (AD) by regulating microbial communities and promoting the growth of facultative taxa, thereby increasing methane yield and stabilizing the AD process. Additionally, micro-aeration contributes to hydrogen sulfide stripping by oxidization to produce molecular sulfur or sulfuric acid. Although micro-aeration can positively affect AD, it must be strictly regulated to maintain an overall anaerobic environment that permits anaerobic microorganisms to thrive. Even so, obligate anaerobes, especially methanogens, could suffer from oxidative stress during micro-aeration. This review describes the applications of micro-aeration in AD and examines the cutting-edge advances in how methanogens survive under oxygen stress. Moreover, barriers and corresponding solutions are proposed to move micro-aeration technology closer to application at scale.
Micro-aeration represents a promising strategy to facilitate anaerobic digestion (AD), as it enhances hydrolysis, improves methane yield, oxidizes specific pollutants, and thereby overall improves AD.Low oxygen solubility in water, rapid consumption of dissolved oxygen by facultative microbes, the formation of microbial aggregates, and the intrinsic tolerance of some methanogenic species to oxygen are suggested as potential mechanisms for unimpaired AD process in response to oxygen exposure.Fundamental understanding of anaerobic microorganisms’ tolerance to oxygen stress and long-term pilot scale tests of effects of micro-aeration on AD are needed in order to move micro-aeration technology closer to applications.</description><subject>Acidification</subject><subject>Aeration</subject><subject>Alternative energy sources</subject><subject>Anaerobes</subject><subject>Anaerobic digestion</subject><subject>Anaerobic microorganisms</subject><subject>Anaerobiosis</subject><subject>Bacteria</subject><subject>barriers</subject><subject>Biogas</subject><subject>Bioreactors</subject><subject>Cellulase</subject><subject>Cellulose</subject><subject>Enzymes</subject><subject>Hydrogen</subject><subject>Hydrogen sulfide</subject><subject>Lignocellulose</subject><subject>Methane</subject><subject>methane production</subject><subject>Methanogenic bacteria</subject><subject>methanogens</subject><subject>micro-aeration</subject><subject>Microbial activity</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Oxygen</subject><subject>oxygen stress</subject><subject>Respiration</subject><subject>Sulfur</subject><subject>Sulfuric acid</subject><subject>Waste disposal</subject><issn>0167-7799</issn><issn>1879-3096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU9vGyEQxVHUKnH-fIRGK_XSy24HBsOSSxRFbVIpVS_tGbHAplj2bgI4Ur59x7LbQy_tCRC_N0_zHmPvOHQcuPq46moaavQ_OwFCdGA6gP6ILXivTYtg1Bu2IE63Whtzwk5LWQEAasOP2QkqQV8cF-z-a_J5bl3MrqZ5umrc1Lhas_M1vcSm0K3Gx9emzs3ofFqnSm-CSDAPyTchPcayU56zt6Nbl3hxOM_Yj8-fvt_etw_f7r7c3jy0XmqsrVYDOYvBSDTaoFQOl0r1PMqBO3ASQlg6jaHXI6pegqRVYBm8H6Xqowx4xj7s5z7l-XlL3naTio_rtZvivC1WaIE9R9TwXyhHLhAJff8Xupq3eaJFrOgBOOUmOVHLPUWRlZLjaJ9y2rj8ajnYXSt2ZQ-t2F0rFoylVkh3eZi-HTYx_FH9roGA6z0QKbmXFLMtPsXJx5By9NWGOf3D4he4VJ4q</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Fu, Shanfei</creator><creator>Lian, Shujuan</creator><creator>Angelidaki, Irini</creator><creator>Guo, Rongbo</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5822-5507</orcidid><orcidid>https://orcid.org/0000-0002-6570-1487</orcidid><orcidid>https://orcid.org/0000-0002-9077-7731</orcidid><orcidid>https://orcid.org/0000-0002-6357-578X</orcidid></search><sort><creationdate>20230501</creationdate><title>Micro-aeration: an attractive strategy to facilitate anaerobic digestion</title><author>Fu, Shanfei ; Lian, Shujuan ; Angelidaki, Irini ; Guo, Rongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-76b1672b943979346a356681e4b1a0a40dd5a73d87f36840430905dccf468e4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acidification</topic><topic>Aeration</topic><topic>Alternative energy sources</topic><topic>Anaerobes</topic><topic>Anaerobic digestion</topic><topic>Anaerobic microorganisms</topic><topic>Anaerobiosis</topic><topic>Bacteria</topic><topic>barriers</topic><topic>Biogas</topic><topic>Bioreactors</topic><topic>Cellulase</topic><topic>Cellulose</topic><topic>Enzymes</topic><topic>Hydrogen</topic><topic>Hydrogen sulfide</topic><topic>Lignocellulose</topic><topic>Methane</topic><topic>methane production</topic><topic>Methanogenic bacteria</topic><topic>methanogens</topic><topic>micro-aeration</topic><topic>Microbial activity</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Oxygen</topic><topic>oxygen stress</topic><topic>Respiration</topic><topic>Sulfur</topic><topic>Sulfuric acid</topic><topic>Waste disposal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Shanfei</creatorcontrib><creatorcontrib>Lian, Shujuan</creatorcontrib><creatorcontrib>Angelidaki, Irini</creatorcontrib><creatorcontrib>Guo, Rongbo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in biotechnology (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Shanfei</au><au>Lian, Shujuan</au><au>Angelidaki, Irini</au><au>Guo, Rongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro-aeration: an attractive strategy to facilitate anaerobic digestion</atitle><jtitle>Trends in biotechnology (Regular ed.)</jtitle><addtitle>Trends Biotechnol</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>41</volume><issue>5</issue><spage>714</spage><epage>726</epage><pages>714-726</pages><issn>0167-7799</issn><eissn>1879-3096</eissn><abstract>Micro-aeration can facilitate anaerobic digestion (AD) by regulating microbial communities and promoting the growth of facultative taxa, thereby increasing methane yield and stabilizing the AD process. Additionally, micro-aeration contributes to hydrogen sulfide stripping by oxidization to produce molecular sulfur or sulfuric acid. Although micro-aeration can positively affect AD, it must be strictly regulated to maintain an overall anaerobic environment that permits anaerobic microorganisms to thrive. Even so, obligate anaerobes, especially methanogens, could suffer from oxidative stress during micro-aeration. This review describes the applications of micro-aeration in AD and examines the cutting-edge advances in how methanogens survive under oxygen stress. Moreover, barriers and corresponding solutions are proposed to move micro-aeration technology closer to application at scale.
Micro-aeration represents a promising strategy to facilitate anaerobic digestion (AD), as it enhances hydrolysis, improves methane yield, oxidizes specific pollutants, and thereby overall improves AD.Low oxygen solubility in water, rapid consumption of dissolved oxygen by facultative microbes, the formation of microbial aggregates, and the intrinsic tolerance of some methanogenic species to oxygen are suggested as potential mechanisms for unimpaired AD process in response to oxygen exposure.Fundamental understanding of anaerobic microorganisms’ tolerance to oxygen stress and long-term pilot scale tests of effects of micro-aeration on AD are needed in order to move micro-aeration technology closer to applications.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>36216713</pmid><doi>10.1016/j.tibtech.2022.09.008</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5822-5507</orcidid><orcidid>https://orcid.org/0000-0002-6570-1487</orcidid><orcidid>https://orcid.org/0000-0002-9077-7731</orcidid><orcidid>https://orcid.org/0000-0002-6357-578X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7799 |
ispartof | Trends in biotechnology (Regular ed.), 2023-05, Vol.41 (5), p.714-726 |
issn | 0167-7799 1879-3096 |
language | eng |
recordid | cdi_proquest_miscellaneous_2723813370 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Acidification Aeration Alternative energy sources Anaerobes Anaerobic digestion Anaerobic microorganisms Anaerobiosis Bacteria barriers Biogas Bioreactors Cellulase Cellulose Enzymes Hydrogen Hydrogen sulfide Lignocellulose Methane methane production Methanogenic bacteria methanogens micro-aeration Microbial activity Microbiota Microorganisms Oxidation Oxidative stress Oxygen oxygen stress Respiration Sulfur Sulfuric acid Waste disposal |
title | Micro-aeration: an attractive strategy to facilitate anaerobic digestion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro-aeration:%20an%20attractive%20strategy%20to%20facilitate%20anaerobic%20digestion&rft.jtitle=Trends%20in%20biotechnology%20(Regular%20ed.)&rft.au=Fu,%20Shanfei&rft.date=2023-05-01&rft.volume=41&rft.issue=5&rft.spage=714&rft.epage=726&rft.pages=714-726&rft.issn=0167-7799&rft.eissn=1879-3096&rft_id=info:doi/10.1016/j.tibtech.2022.09.008&rft_dat=%3Cproquest_cross%3E2723813370%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2800137941&rft_id=info:pmid/36216713&rft_els_id=S0167779922002426&rfr_iscdi=true |