Comparative evaluation of genetic algorithm and backpropagation for training neural networks

In view of several limitations of gradient search techniques (e.g. backpropagation), global search techniques, including evolutionary programming and genetic algorithms (GAs), have been proposed for training neural networks (NNs). However, the effectiveness, ease-of-use, and efficiency of these glob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2000-11, Vol.129 (1), p.45-59
Hauptverfasser: Sexton, Randall S., Gupta, Jatinder N.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 45
container_title Information sciences
container_volume 129
creator Sexton, Randall S.
Gupta, Jatinder N.D.
description In view of several limitations of gradient search techniques (e.g. backpropagation), global search techniques, including evolutionary programming and genetic algorithms (GAs), have been proposed for training neural networks (NNs). However, the effectiveness, ease-of-use, and efficiency of these global search techniques have not been compared extensively with gradient search techniques. Using five chaotic time series functions, this paper empirically compares a genetic algorithm with backpropagation for training NNs. The chaotic series are interesting because of their similarity to economic and financial series found in financial markets.
doi_str_mv 10.1016/S0020-0255(00)00068-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27232563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025500000682</els_id><sourcerecordid>27232563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-bd37aa125417a80b8706abb6466f775b2c0bd7569ff40732cc57bf47ea099b583</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKEn0UN1mjZJexJZ_ALBg3oTwiRNa9y2qUm74r-3a8Wrp3cOzzvMPIQcJ3CeQMIvngAoxEAZOwU4AwCex3SHLJJc0JjTItkliz9knxyE8D5BmeB8QV5Xru3R42A3JjIbbMZpdF3kqqg2nRmsjrCpnbfDWxthV0YK9br3rsd6Bivno8Gj7WxXR50ZPTZTDJ_Or8Mh2auwCeboN5fk5eb6eXUXPzze3q-uHmKdQTbEqkwFYkJZlgjMQeUCOCrFM84rIZiiGlQpGC-qKgORUq2ZUFUmDEJRKJanS3Iy750O-xhNGGRrgzZNg51xY5BU0JQynk4gm0HtXQjeVLL3tkX_JROQW5fyx6XcipIw5dalpFPvcu6Z6YuNNV4GbU2nTWm90YMsnf1nwzcXnHza</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27232563</pqid></control><display><type>article</type><title>Comparative evaluation of genetic algorithm and backpropagation for training neural networks</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sexton, Randall S. ; Gupta, Jatinder N.D.</creator><creatorcontrib>Sexton, Randall S. ; Gupta, Jatinder N.D.</creatorcontrib><description>In view of several limitations of gradient search techniques (e.g. backpropagation), global search techniques, including evolutionary programming and genetic algorithms (GAs), have been proposed for training neural networks (NNs). However, the effectiveness, ease-of-use, and efficiency of these global search techniques have not been compared extensively with gradient search techniques. Using five chaotic time series functions, this paper empirically compares a genetic algorithm with backpropagation for training NNs. The chaotic series are interesting because of their similarity to economic and financial series found in financial markets.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/S0020-0255(00)00068-2</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Backpropagation ; Epoch ; Genetic algorithms ; Global search algorithms ; Interpolation ; Neural network training</subject><ispartof>Information sciences, 2000-11, Vol.129 (1), p.45-59</ispartof><rights>2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-bd37aa125417a80b8706abb6466f775b2c0bd7569ff40732cc57bf47ea099b583</citedby><cites>FETCH-LOGICAL-c404t-bd37aa125417a80b8706abb6466f775b2c0bd7569ff40732cc57bf47ea099b583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025500000682$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Sexton, Randall S.</creatorcontrib><creatorcontrib>Gupta, Jatinder N.D.</creatorcontrib><title>Comparative evaluation of genetic algorithm and backpropagation for training neural networks</title><title>Information sciences</title><description>In view of several limitations of gradient search techniques (e.g. backpropagation), global search techniques, including evolutionary programming and genetic algorithms (GAs), have been proposed for training neural networks (NNs). However, the effectiveness, ease-of-use, and efficiency of these global search techniques have not been compared extensively with gradient search techniques. Using five chaotic time series functions, this paper empirically compares a genetic algorithm with backpropagation for training NNs. The chaotic series are interesting because of their similarity to economic and financial series found in financial markets.</description><subject>Backpropagation</subject><subject>Epoch</subject><subject>Genetic algorithms</subject><subject>Global search algorithms</subject><subject>Interpolation</subject><subject>Neural network training</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKEn0UN1mjZJexJZ_ALBg3oTwiRNa9y2qUm74r-3a8Wrp3cOzzvMPIQcJ3CeQMIvngAoxEAZOwU4AwCex3SHLJJc0JjTItkliz9knxyE8D5BmeB8QV5Xru3R42A3JjIbbMZpdF3kqqg2nRmsjrCpnbfDWxthV0YK9br3rsd6Bivno8Gj7WxXR50ZPTZTDJ_Or8Mh2auwCeboN5fk5eb6eXUXPzze3q-uHmKdQTbEqkwFYkJZlgjMQeUCOCrFM84rIZiiGlQpGC-qKgORUq2ZUFUmDEJRKJanS3Iy750O-xhNGGRrgzZNg51xY5BU0JQynk4gm0HtXQjeVLL3tkX_JROQW5fyx6XcipIw5dalpFPvcu6Z6YuNNV4GbU2nTWm90YMsnf1nwzcXnHza</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Sexton, Randall S.</creator><creator>Gupta, Jatinder N.D.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20001101</creationdate><title>Comparative evaluation of genetic algorithm and backpropagation for training neural networks</title><author>Sexton, Randall S. ; Gupta, Jatinder N.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-bd37aa125417a80b8706abb6466f775b2c0bd7569ff40732cc57bf47ea099b583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Backpropagation</topic><topic>Epoch</topic><topic>Genetic algorithms</topic><topic>Global search algorithms</topic><topic>Interpolation</topic><topic>Neural network training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sexton, Randall S.</creatorcontrib><creatorcontrib>Gupta, Jatinder N.D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sexton, Randall S.</au><au>Gupta, Jatinder N.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative evaluation of genetic algorithm and backpropagation for training neural networks</atitle><jtitle>Information sciences</jtitle><date>2000-11-01</date><risdate>2000</risdate><volume>129</volume><issue>1</issue><spage>45</spage><epage>59</epage><pages>45-59</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>In view of several limitations of gradient search techniques (e.g. backpropagation), global search techniques, including evolutionary programming and genetic algorithms (GAs), have been proposed for training neural networks (NNs). However, the effectiveness, ease-of-use, and efficiency of these global search techniques have not been compared extensively with gradient search techniques. Using five chaotic time series functions, this paper empirically compares a genetic algorithm with backpropagation for training NNs. The chaotic series are interesting because of their similarity to economic and financial series found in financial markets.</abstract><pub>Elsevier Inc</pub><doi>10.1016/S0020-0255(00)00068-2</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2000-11, Vol.129 (1), p.45-59
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_27232563
source Elsevier ScienceDirect Journals Complete
subjects Backpropagation
Epoch
Genetic algorithms
Global search algorithms
Interpolation
Neural network training
title Comparative evaluation of genetic algorithm and backpropagation for training neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A30%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20evaluation%20of%20genetic%20algorithm%20and%20backpropagation%20for%20training%20neural%20networks&rft.jtitle=Information%20sciences&rft.au=Sexton,%20Randall%20S.&rft.date=2000-11-01&rft.volume=129&rft.issue=1&rft.spage=45&rft.epage=59&rft.pages=45-59&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/S0020-0255(00)00068-2&rft_dat=%3Cproquest_cross%3E27232563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27232563&rft_id=info:pmid/&rft_els_id=S0020025500000682&rfr_iscdi=true