Measuring the impact of simulation debriefing on the practices of interprofessional trauma teams using natural language processing

Natural language processing (NLP) may be a tool for automating trauma teamwork assessment in simulated scenarios. Using the Trauma Nontechnical Skills Assessment (T-NOTECHS), raters assessed video recordings of trauma teams in simulated pre-debrief (Sim1) and post-debrief (Sim2) trauma resuscitation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of surgery 2023-02, Vol.225 (2), p.394-399
Hauptverfasser: Rosser, Alexandra A., Qadadha, Yazeed M., Thompson, Ryan J., Jung, Hee Soo, Jung, Sarah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 399
container_issue 2
container_start_page 394
container_title The American journal of surgery
container_volume 225
creator Rosser, Alexandra A.
Qadadha, Yazeed M.
Thompson, Ryan J.
Jung, Hee Soo
Jung, Sarah
description Natural language processing (NLP) may be a tool for automating trauma teamwork assessment in simulated scenarios. Using the Trauma Nontechnical Skills Assessment (T-NOTECHS), raters assessed video recordings of trauma teams in simulated pre-debrief (Sim1) and post-debrief (Sim2) trauma resuscitations. We developed codes through directed content analysis and created algorithms capturing teamwork-related discourse through NLP. Using a within subjects pre-post design (n = 150), we compared changes in teams' Sim1 versus Sim2 T-NOTECHS scores and automatically coded discourse to identify which NLP algorithms could identify skills assessed by the T-NOTECHS. Automatically coded behaviors revealed significant post-debrief increases in teams' simulation discourse: Verbalizing Findings, Acknowledging Communication, Directed Communication, Directing Assessment and Role Assignment, and Leader as Hub for Information. Our results suggest NLP can capture changes in trauma team discourse. These findings have implications for the expedition of team assessment and innovations in real-time feedback when paired with speech-to-text technology. •Natural Language Processing techniques can detect changes in trauma teams' behavior.•Both derived and naïve algorithms were able to detect changes in discourse patterns.•Not all automated performance measures showed improvement captured by the T-NOTECHS.
doi_str_mv 10.1016/j.amjsurg.2022.09.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2723161488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002961022005657</els_id><sourcerecordid>2723161488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-f622c3842e14dd45a984ddc0e2eddae0f94bcb4ead3e76e4891398af8cb9871b3</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhS0EorcXfgIoEhs2CX41sVcVquhDKmIDa8uxJ8FRHrd-IHXLL8fWve2CTVejkb9zZjwHoQ8ENwST9svU6GUKyY8NxZQ2WDaYiFdoR0QnayIEe412GGNay5bgM3QewpRbQjh7i85YS3FHOr5Df7-Dzi5uHav4Gyq3HLSJ1TZUwS1p1tFta2Wh9w6GwuSuYAefKWcgFNKtEfzBbwOEkHE9V9HrtOgqgl5ClUIRrjomn59mvY5Jj8ViM0Wwju_Qm0HPAd6f6h79uv728-q2vv9xc3f19b42TLJYDy2lhglOgXBr-YWWIleDgYK1GvAgeW96Dtoy6FrgQhImhR6E6aXoSM_26PPRN49-SBCiWlwwMOeVYEtB0Y4y0hKeb7dHn_5Dpy35_LVCCYY5xaLL1MWRMn4LwcOgDt4t2j8qglUJSU3qFJIqISksVQ4p6z6e3FO_gH1WPaWSgcsjAPkcfxx4FYyD1YB1HkxUdnMvjPgHzMGpRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783042087</pqid></control><display><type>article</type><title>Measuring the impact of simulation debriefing on the practices of interprofessional trauma teams using natural language processing</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Rosser, Alexandra A. ; Qadadha, Yazeed M. ; Thompson, Ryan J. ; Jung, Hee Soo ; Jung, Sarah</creator><creatorcontrib>Rosser, Alexandra A. ; Qadadha, Yazeed M. ; Thompson, Ryan J. ; Jung, Hee Soo ; Jung, Sarah</creatorcontrib><description>Natural language processing (NLP) may be a tool for automating trauma teamwork assessment in simulated scenarios. Using the Trauma Nontechnical Skills Assessment (T-NOTECHS), raters assessed video recordings of trauma teams in simulated pre-debrief (Sim1) and post-debrief (Sim2) trauma resuscitations. We developed codes through directed content analysis and created algorithms capturing teamwork-related discourse through NLP. Using a within subjects pre-post design (n = 150), we compared changes in teams' Sim1 versus Sim2 T-NOTECHS scores and automatically coded discourse to identify which NLP algorithms could identify skills assessed by the T-NOTECHS. Automatically coded behaviors revealed significant post-debrief increases in teams' simulation discourse: Verbalizing Findings, Acknowledging Communication, Directed Communication, Directing Assessment and Role Assignment, and Leader as Hub for Information. Our results suggest NLP can capture changes in trauma team discourse. These findings have implications for the expedition of team assessment and innovations in real-time feedback when paired with speech-to-text technology. •Natural Language Processing techniques can detect changes in trauma teams' behavior.•Both derived and naïve algorithms were able to detect changes in discourse patterns.•Not all automated performance measures showed improvement captured by the T-NOTECHS.</description><identifier>ISSN: 0002-9610</identifier><identifier>EISSN: 1879-1883</identifier><identifier>DOI: 10.1016/j.amjsurg.2022.09.018</identifier><identifier>PMID: 36207174</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Automation ; Clinical Competence ; Codes ; Communication ; Computer Simulation ; Content analysis ; Data collection ; Emergency medical care ; Humans ; Interdisciplinary aspects ; Language ; Leadership ; Natural Language Processing ; Patient Care Team ; Patients ; Physical Examination ; Self evaluation ; Simulation ; Simulation Training ; Skills ; Speech recognition ; Teams ; Teamwork ; Trauma</subject><ispartof>The American journal of surgery, 2023-02, Vol.225 (2), p.394-399</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright © 2022 Elsevier Inc. All rights reserved.</rights><rights>2022. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-f622c3842e14dd45a984ddc0e2eddae0f94bcb4ead3e76e4891398af8cb9871b3</citedby><cites>FETCH-LOGICAL-c393t-f622c3842e14dd45a984ddc0e2eddae0f94bcb4ead3e76e4891398af8cb9871b3</cites><orcidid>0000-0001-8226-7566 ; 0000-0002-7327-4411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2783042087?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997,64387,64389,64391,72471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36207174$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosser, Alexandra A.</creatorcontrib><creatorcontrib>Qadadha, Yazeed M.</creatorcontrib><creatorcontrib>Thompson, Ryan J.</creatorcontrib><creatorcontrib>Jung, Hee Soo</creatorcontrib><creatorcontrib>Jung, Sarah</creatorcontrib><title>Measuring the impact of simulation debriefing on the practices of interprofessional trauma teams using natural language processing</title><title>The American journal of surgery</title><addtitle>Am J Surg</addtitle><description>Natural language processing (NLP) may be a tool for automating trauma teamwork assessment in simulated scenarios. Using the Trauma Nontechnical Skills Assessment (T-NOTECHS), raters assessed video recordings of trauma teams in simulated pre-debrief (Sim1) and post-debrief (Sim2) trauma resuscitations. We developed codes through directed content analysis and created algorithms capturing teamwork-related discourse through NLP. Using a within subjects pre-post design (n = 150), we compared changes in teams' Sim1 versus Sim2 T-NOTECHS scores and automatically coded discourse to identify which NLP algorithms could identify skills assessed by the T-NOTECHS. Automatically coded behaviors revealed significant post-debrief increases in teams' simulation discourse: Verbalizing Findings, Acknowledging Communication, Directed Communication, Directing Assessment and Role Assignment, and Leader as Hub for Information. Our results suggest NLP can capture changes in trauma team discourse. These findings have implications for the expedition of team assessment and innovations in real-time feedback when paired with speech-to-text technology. •Natural Language Processing techniques can detect changes in trauma teams' behavior.•Both derived and naïve algorithms were able to detect changes in discourse patterns.•Not all automated performance measures showed improvement captured by the T-NOTECHS.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Clinical Competence</subject><subject>Codes</subject><subject>Communication</subject><subject>Computer Simulation</subject><subject>Content analysis</subject><subject>Data collection</subject><subject>Emergency medical care</subject><subject>Humans</subject><subject>Interdisciplinary aspects</subject><subject>Language</subject><subject>Leadership</subject><subject>Natural Language Processing</subject><subject>Patient Care Team</subject><subject>Patients</subject><subject>Physical Examination</subject><subject>Self evaluation</subject><subject>Simulation</subject><subject>Simulation Training</subject><subject>Skills</subject><subject>Speech recognition</subject><subject>Teams</subject><subject>Teamwork</subject><subject>Trauma</subject><issn>0002-9610</issn><issn>1879-1883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtv1TAQhS0EorcXfgIoEhs2CX41sVcVquhDKmIDa8uxJ8FRHrd-IHXLL8fWve2CTVejkb9zZjwHoQ8ENwST9svU6GUKyY8NxZQ2WDaYiFdoR0QnayIEe412GGNay5bgM3QewpRbQjh7i85YS3FHOr5Df7-Dzi5uHav4Gyq3HLSJ1TZUwS1p1tFta2Wh9w6GwuSuYAefKWcgFNKtEfzBbwOEkHE9V9HrtOgqgl5ClUIRrjomn59mvY5Jj8ViM0Wwju_Qm0HPAd6f6h79uv728-q2vv9xc3f19b42TLJYDy2lhglOgXBr-YWWIleDgYK1GvAgeW96Dtoy6FrgQhImhR6E6aXoSM_26PPRN49-SBCiWlwwMOeVYEtB0Y4y0hKeb7dHn_5Dpy35_LVCCYY5xaLL1MWRMn4LwcOgDt4t2j8qglUJSU3qFJIqISksVQ4p6z6e3FO_gH1WPaWSgcsjAPkcfxx4FYyD1YB1HkxUdnMvjPgHzMGpRw</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Rosser, Alexandra A.</creator><creator>Qadadha, Yazeed M.</creator><creator>Thompson, Ryan J.</creator><creator>Jung, Hee Soo</creator><creator>Jung, Sarah</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8226-7566</orcidid><orcidid>https://orcid.org/0000-0002-7327-4411</orcidid></search><sort><creationdate>202302</creationdate><title>Measuring the impact of simulation debriefing on the practices of interprofessional trauma teams using natural language processing</title><author>Rosser, Alexandra A. ; Qadadha, Yazeed M. ; Thompson, Ryan J. ; Jung, Hee Soo ; Jung, Sarah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-f622c3842e14dd45a984ddc0e2eddae0f94bcb4ead3e76e4891398af8cb9871b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Clinical Competence</topic><topic>Codes</topic><topic>Communication</topic><topic>Computer Simulation</topic><topic>Content analysis</topic><topic>Data collection</topic><topic>Emergency medical care</topic><topic>Humans</topic><topic>Interdisciplinary aspects</topic><topic>Language</topic><topic>Leadership</topic><topic>Natural Language Processing</topic><topic>Patient Care Team</topic><topic>Patients</topic><topic>Physical Examination</topic><topic>Self evaluation</topic><topic>Simulation</topic><topic>Simulation Training</topic><topic>Skills</topic><topic>Speech recognition</topic><topic>Teams</topic><topic>Teamwork</topic><topic>Trauma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosser, Alexandra A.</creatorcontrib><creatorcontrib>Qadadha, Yazeed M.</creatorcontrib><creatorcontrib>Thompson, Ryan J.</creatorcontrib><creatorcontrib>Jung, Hee Soo</creatorcontrib><creatorcontrib>Jung, Sarah</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>The American journal of surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosser, Alexandra A.</au><au>Qadadha, Yazeed M.</au><au>Thompson, Ryan J.</au><au>Jung, Hee Soo</au><au>Jung, Sarah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring the impact of simulation debriefing on the practices of interprofessional trauma teams using natural language processing</atitle><jtitle>The American journal of surgery</jtitle><addtitle>Am J Surg</addtitle><date>2023-02</date><risdate>2023</risdate><volume>225</volume><issue>2</issue><spage>394</spage><epage>399</epage><pages>394-399</pages><issn>0002-9610</issn><eissn>1879-1883</eissn><abstract>Natural language processing (NLP) may be a tool for automating trauma teamwork assessment in simulated scenarios. Using the Trauma Nontechnical Skills Assessment (T-NOTECHS), raters assessed video recordings of trauma teams in simulated pre-debrief (Sim1) and post-debrief (Sim2) trauma resuscitations. We developed codes through directed content analysis and created algorithms capturing teamwork-related discourse through NLP. Using a within subjects pre-post design (n = 150), we compared changes in teams' Sim1 versus Sim2 T-NOTECHS scores and automatically coded discourse to identify which NLP algorithms could identify skills assessed by the T-NOTECHS. Automatically coded behaviors revealed significant post-debrief increases in teams' simulation discourse: Verbalizing Findings, Acknowledging Communication, Directed Communication, Directing Assessment and Role Assignment, and Leader as Hub for Information. Our results suggest NLP can capture changes in trauma team discourse. These findings have implications for the expedition of team assessment and innovations in real-time feedback when paired with speech-to-text technology. •Natural Language Processing techniques can detect changes in trauma teams' behavior.•Both derived and naïve algorithms were able to detect changes in discourse patterns.•Not all automated performance measures showed improvement captured by the T-NOTECHS.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36207174</pmid><doi>10.1016/j.amjsurg.2022.09.018</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8226-7566</orcidid><orcidid>https://orcid.org/0000-0002-7327-4411</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-9610
ispartof The American journal of surgery, 2023-02, Vol.225 (2), p.394-399
issn 0002-9610
1879-1883
language eng
recordid cdi_proquest_miscellaneous_2723161488
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Algorithms
Automation
Clinical Competence
Codes
Communication
Computer Simulation
Content analysis
Data collection
Emergency medical care
Humans
Interdisciplinary aspects
Language
Leadership
Natural Language Processing
Patient Care Team
Patients
Physical Examination
Self evaluation
Simulation
Simulation Training
Skills
Speech recognition
Teams
Teamwork
Trauma
title Measuring the impact of simulation debriefing on the practices of interprofessional trauma teams using natural language processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20the%20impact%20of%20simulation%20debriefing%20on%20the%20practices%20of%20interprofessional%20trauma%20teams%20using%20natural%20language%20processing&rft.jtitle=The%20American%20journal%20of%20surgery&rft.au=Rosser,%20Alexandra%20A.&rft.date=2023-02&rft.volume=225&rft.issue=2&rft.spage=394&rft.epage=399&rft.pages=394-399&rft.issn=0002-9610&rft.eissn=1879-1883&rft_id=info:doi/10.1016/j.amjsurg.2022.09.018&rft_dat=%3Cproquest_cross%3E2723161488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2783042087&rft_id=info:pmid/36207174&rft_els_id=S0002961022005657&rfr_iscdi=true