Evolutionary deep feature selection for compact representation of gigapixel images in digital pathology

Despite the recent progress in Deep Neural Networks (DNNs) to characterize histopathology images, compactly representing a gigapixel whole-slide image (WSI) via salient features to enable computational pathology is still an urgent need and a significant challenge. In this paper, we propose a novel W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence in medicine 2022-10, Vol.132, p.102368-102368, Article 102368
Hauptverfasser: Bidgoli, Azam Asilian, Rahnamayan, Shahryar, Dehkharghanian, Taher, Riasatian, Abtin, Kalra, Shivam, Zaveri, Manit, Campbell, Clinton J.V., Parwani, Anil, Pantanowitz, Liron, Tizhoosh, H.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102368
container_issue
container_start_page 102368
container_title Artificial intelligence in medicine
container_volume 132
creator Bidgoli, Azam Asilian
Rahnamayan, Shahryar
Dehkharghanian, Taher
Riasatian, Abtin
Kalra, Shivam
Zaveri, Manit
Campbell, Clinton J.V.
Parwani, Anil
Pantanowitz, Liron
Tizhoosh, H.R.
description Despite the recent progress in Deep Neural Networks (DNNs) to characterize histopathology images, compactly representing a gigapixel whole-slide image (WSI) via salient features to enable computational pathology is still an urgent need and a significant challenge. In this paper, we propose a novel WSI characterization approach to represent, search and classify biopsy specimens using a compact feature vector (CFV) extracted from a multitude of deep feature vectors. Since the non-optimal design and training of deep networks may result in many irrelevant and redundant features and also cause computational bottlenecks, we proposed a low-cost stochastic method to optimize the output of pre-trained deep networks using evolutionary algorithms to generate a very small set of features to accurately represent each tissue/biopsy. The performance of the proposed method has been assessed using WSIs from the publicly available TCGA image data. In addition to acquiring a very compact representation (i.e., 11,000 times smaller than the initial set of features), the optimized features achieved 93% classification accuracy resulting in 11% improvement compared to the published benchmarks. The experimental results reveal that the proposed method can reliably select salient features of the biopsy sample. Furthermore, the proposed approach holds the potential to immensely facilitate the adoption of digital pathology by enabling a new generation of WSI representation for efficient storage and more user-friendly visualization. •Deep learning increasingly influences in digital pathology workflow.•Compactly representing a WSI to enable computational pathology is an urgent need.•Evolutionary computation can optimize the output of pre-trained deep networks.•Irrelevant or redundant features are removed to encompass salient features.•Compact feature vectors achieved 93% classification accuracy.
doi_str_mv 10.1016/j.artmed.2022.102368
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2723161443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0933365722001294</els_id><sourcerecordid>2723161443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-29134a525d6267572937eb043cac83fa8b5cd21a8c9171b2214dc86ce5a57bf93</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwBgweWVJ8SexkQUJVuUiVWGC2HOckuHLjYDsVfXtSwsx0pPNfpP9D6JaSFSVU3O9WOqQ9NCtGGJtejIvyDC1oKXnGSkHO0YJUnGdcFPISXcW4I4TInIoF6jYH78Zkfa_DETcAA25BpzEAjuDAnBTc-oCN3w_aJBxgCBChT_pX8i3ubKcH-w0O273uIGLb48Z2NmmHB50-vfPd8RpdtNpFuPm7S_TxtHlfv2Tbt-fX9eM2M5xXKWMV5bkuWNEIJmQhWcUl1CTnRpuSt7qsC9MwqktTUUlrxmjemFIYKHQh67biS3Q39w7Bf40Qk9rbaMA53YMfo2KScSponvPJms9WE3yMAVo1hGlBOCpK1Imr2qmZqzpxVTPXKfYwx2CacbAQVDQWegONDRMv1Xj7f8EPFQqErg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723161443</pqid></control><display><type>article</type><title>Evolutionary deep feature selection for compact representation of gigapixel images in digital pathology</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bidgoli, Azam Asilian ; Rahnamayan, Shahryar ; Dehkharghanian, Taher ; Riasatian, Abtin ; Kalra, Shivam ; Zaveri, Manit ; Campbell, Clinton J.V. ; Parwani, Anil ; Pantanowitz, Liron ; Tizhoosh, H.R.</creator><creatorcontrib>Bidgoli, Azam Asilian ; Rahnamayan, Shahryar ; Dehkharghanian, Taher ; Riasatian, Abtin ; Kalra, Shivam ; Zaveri, Manit ; Campbell, Clinton J.V. ; Parwani, Anil ; Pantanowitz, Liron ; Tizhoosh, H.R.</creatorcontrib><description>Despite the recent progress in Deep Neural Networks (DNNs) to characterize histopathology images, compactly representing a gigapixel whole-slide image (WSI) via salient features to enable computational pathology is still an urgent need and a significant challenge. In this paper, we propose a novel WSI characterization approach to represent, search and classify biopsy specimens using a compact feature vector (CFV) extracted from a multitude of deep feature vectors. Since the non-optimal design and training of deep networks may result in many irrelevant and redundant features and also cause computational bottlenecks, we proposed a low-cost stochastic method to optimize the output of pre-trained deep networks using evolutionary algorithms to generate a very small set of features to accurately represent each tissue/biopsy. The performance of the proposed method has been assessed using WSIs from the publicly available TCGA image data. In addition to acquiring a very compact representation (i.e., 11,000 times smaller than the initial set of features), the optimized features achieved 93% classification accuracy resulting in 11% improvement compared to the published benchmarks. The experimental results reveal that the proposed method can reliably select salient features of the biopsy sample. Furthermore, the proposed approach holds the potential to immensely facilitate the adoption of digital pathology by enabling a new generation of WSI representation for efficient storage and more user-friendly visualization. •Deep learning increasingly influences in digital pathology workflow.•Compactly representing a WSI to enable computational pathology is an urgent need.•Evolutionary computation can optimize the output of pre-trained deep networks.•Irrelevant or redundant features are removed to encompass salient features.•Compact feature vectors achieved 93% classification accuracy.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/j.artmed.2022.102368</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Digital pathology ; Evolutionary computation ; Image representation ; Whole slide images</subject><ispartof>Artificial intelligence in medicine, 2022-10, Vol.132, p.102368-102368, Article 102368</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-29134a525d6267572937eb043cac83fa8b5cd21a8c9171b2214dc86ce5a57bf93</citedby><cites>FETCH-LOGICAL-c339t-29134a525d6267572937eb043cac83fa8b5cd21a8c9171b2214dc86ce5a57bf93</cites><orcidid>0000-0002-8896-1134 ; 0000-0001-5488-601X ; 0000-0002-8741-0154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artmed.2022.102368$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bidgoli, Azam Asilian</creatorcontrib><creatorcontrib>Rahnamayan, Shahryar</creatorcontrib><creatorcontrib>Dehkharghanian, Taher</creatorcontrib><creatorcontrib>Riasatian, Abtin</creatorcontrib><creatorcontrib>Kalra, Shivam</creatorcontrib><creatorcontrib>Zaveri, Manit</creatorcontrib><creatorcontrib>Campbell, Clinton J.V.</creatorcontrib><creatorcontrib>Parwani, Anil</creatorcontrib><creatorcontrib>Pantanowitz, Liron</creatorcontrib><creatorcontrib>Tizhoosh, H.R.</creatorcontrib><title>Evolutionary deep feature selection for compact representation of gigapixel images in digital pathology</title><title>Artificial intelligence in medicine</title><description>Despite the recent progress in Deep Neural Networks (DNNs) to characterize histopathology images, compactly representing a gigapixel whole-slide image (WSI) via salient features to enable computational pathology is still an urgent need and a significant challenge. In this paper, we propose a novel WSI characterization approach to represent, search and classify biopsy specimens using a compact feature vector (CFV) extracted from a multitude of deep feature vectors. Since the non-optimal design and training of deep networks may result in many irrelevant and redundant features and also cause computational bottlenecks, we proposed a low-cost stochastic method to optimize the output of pre-trained deep networks using evolutionary algorithms to generate a very small set of features to accurately represent each tissue/biopsy. The performance of the proposed method has been assessed using WSIs from the publicly available TCGA image data. In addition to acquiring a very compact representation (i.e., 11,000 times smaller than the initial set of features), the optimized features achieved 93% classification accuracy resulting in 11% improvement compared to the published benchmarks. The experimental results reveal that the proposed method can reliably select salient features of the biopsy sample. Furthermore, the proposed approach holds the potential to immensely facilitate the adoption of digital pathology by enabling a new generation of WSI representation for efficient storage and more user-friendly visualization. •Deep learning increasingly influences in digital pathology workflow.•Compactly representing a WSI to enable computational pathology is an urgent need.•Evolutionary computation can optimize the output of pre-trained deep networks.•Irrelevant or redundant features are removed to encompass salient features.•Compact feature vectors achieved 93% classification accuracy.</description><subject>Digital pathology</subject><subject>Evolutionary computation</subject><subject>Image representation</subject><subject>Whole slide images</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwBgweWVJ8SexkQUJVuUiVWGC2HOckuHLjYDsVfXtSwsx0pPNfpP9D6JaSFSVU3O9WOqQ9NCtGGJtejIvyDC1oKXnGSkHO0YJUnGdcFPISXcW4I4TInIoF6jYH78Zkfa_DETcAA25BpzEAjuDAnBTc-oCN3w_aJBxgCBChT_pX8i3ubKcH-w0O273uIGLb48Z2NmmHB50-vfPd8RpdtNpFuPm7S_TxtHlfv2Tbt-fX9eM2M5xXKWMV5bkuWNEIJmQhWcUl1CTnRpuSt7qsC9MwqktTUUlrxmjemFIYKHQh67biS3Q39w7Bf40Qk9rbaMA53YMfo2KScSponvPJms9WE3yMAVo1hGlBOCpK1Imr2qmZqzpxVTPXKfYwx2CacbAQVDQWegONDRMv1Xj7f8EPFQqErg</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Bidgoli, Azam Asilian</creator><creator>Rahnamayan, Shahryar</creator><creator>Dehkharghanian, Taher</creator><creator>Riasatian, Abtin</creator><creator>Kalra, Shivam</creator><creator>Zaveri, Manit</creator><creator>Campbell, Clinton J.V.</creator><creator>Parwani, Anil</creator><creator>Pantanowitz, Liron</creator><creator>Tizhoosh, H.R.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8896-1134</orcidid><orcidid>https://orcid.org/0000-0001-5488-601X</orcidid><orcidid>https://orcid.org/0000-0002-8741-0154</orcidid></search><sort><creationdate>202210</creationdate><title>Evolutionary deep feature selection for compact representation of gigapixel images in digital pathology</title><author>Bidgoli, Azam Asilian ; Rahnamayan, Shahryar ; Dehkharghanian, Taher ; Riasatian, Abtin ; Kalra, Shivam ; Zaveri, Manit ; Campbell, Clinton J.V. ; Parwani, Anil ; Pantanowitz, Liron ; Tizhoosh, H.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-29134a525d6267572937eb043cac83fa8b5cd21a8c9171b2214dc86ce5a57bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Digital pathology</topic><topic>Evolutionary computation</topic><topic>Image representation</topic><topic>Whole slide images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bidgoli, Azam Asilian</creatorcontrib><creatorcontrib>Rahnamayan, Shahryar</creatorcontrib><creatorcontrib>Dehkharghanian, Taher</creatorcontrib><creatorcontrib>Riasatian, Abtin</creatorcontrib><creatorcontrib>Kalra, Shivam</creatorcontrib><creatorcontrib>Zaveri, Manit</creatorcontrib><creatorcontrib>Campbell, Clinton J.V.</creatorcontrib><creatorcontrib>Parwani, Anil</creatorcontrib><creatorcontrib>Pantanowitz, Liron</creatorcontrib><creatorcontrib>Tizhoosh, H.R.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bidgoli, Azam Asilian</au><au>Rahnamayan, Shahryar</au><au>Dehkharghanian, Taher</au><au>Riasatian, Abtin</au><au>Kalra, Shivam</au><au>Zaveri, Manit</au><au>Campbell, Clinton J.V.</au><au>Parwani, Anil</au><au>Pantanowitz, Liron</au><au>Tizhoosh, H.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary deep feature selection for compact representation of gigapixel images in digital pathology</atitle><jtitle>Artificial intelligence in medicine</jtitle><date>2022-10</date><risdate>2022</risdate><volume>132</volume><spage>102368</spage><epage>102368</epage><pages>102368-102368</pages><artnum>102368</artnum><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>Despite the recent progress in Deep Neural Networks (DNNs) to characterize histopathology images, compactly representing a gigapixel whole-slide image (WSI) via salient features to enable computational pathology is still an urgent need and a significant challenge. In this paper, we propose a novel WSI characterization approach to represent, search and classify biopsy specimens using a compact feature vector (CFV) extracted from a multitude of deep feature vectors. Since the non-optimal design and training of deep networks may result in many irrelevant and redundant features and also cause computational bottlenecks, we proposed a low-cost stochastic method to optimize the output of pre-trained deep networks using evolutionary algorithms to generate a very small set of features to accurately represent each tissue/biopsy. The performance of the proposed method has been assessed using WSIs from the publicly available TCGA image data. In addition to acquiring a very compact representation (i.e., 11,000 times smaller than the initial set of features), the optimized features achieved 93% classification accuracy resulting in 11% improvement compared to the published benchmarks. The experimental results reveal that the proposed method can reliably select salient features of the biopsy sample. Furthermore, the proposed approach holds the potential to immensely facilitate the adoption of digital pathology by enabling a new generation of WSI representation for efficient storage and more user-friendly visualization. •Deep learning increasingly influences in digital pathology workflow.•Compactly representing a WSI to enable computational pathology is an urgent need.•Evolutionary computation can optimize the output of pre-trained deep networks.•Irrelevant or redundant features are removed to encompass salient features.•Compact feature vectors achieved 93% classification accuracy.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.artmed.2022.102368</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8896-1134</orcidid><orcidid>https://orcid.org/0000-0001-5488-601X</orcidid><orcidid>https://orcid.org/0000-0002-8741-0154</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0933-3657
ispartof Artificial intelligence in medicine, 2022-10, Vol.132, p.102368-102368, Article 102368
issn 0933-3657
1873-2860
language eng
recordid cdi_proquest_miscellaneous_2723161443
source Access via ScienceDirect (Elsevier)
subjects Digital pathology
Evolutionary computation
Image representation
Whole slide images
title Evolutionary deep feature selection for compact representation of gigapixel images in digital pathology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20deep%20feature%20selection%20for%20compact%20representation%20of%20gigapixel%20images%20in%20digital%20pathology&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Bidgoli,%20Azam%20Asilian&rft.date=2022-10&rft.volume=132&rft.spage=102368&rft.epage=102368&rft.pages=102368-102368&rft.artnum=102368&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/j.artmed.2022.102368&rft_dat=%3Cproquest_cross%3E2723161443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723161443&rft_id=info:pmid/&rft_els_id=S0933365722001294&rfr_iscdi=true