Evolutionary deep feature selection for compact representation of gigapixel images in digital pathology
Despite the recent progress in Deep Neural Networks (DNNs) to characterize histopathology images, compactly representing a gigapixel whole-slide image (WSI) via salient features to enable computational pathology is still an urgent need and a significant challenge. In this paper, we propose a novel W...
Gespeichert in:
Veröffentlicht in: | Artificial intelligence in medicine 2022-10, Vol.132, p.102368-102368, Article 102368 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102368 |
---|---|
container_issue | |
container_start_page | 102368 |
container_title | Artificial intelligence in medicine |
container_volume | 132 |
creator | Bidgoli, Azam Asilian Rahnamayan, Shahryar Dehkharghanian, Taher Riasatian, Abtin Kalra, Shivam Zaveri, Manit Campbell, Clinton J.V. Parwani, Anil Pantanowitz, Liron Tizhoosh, H.R. |
description | Despite the recent progress in Deep Neural Networks (DNNs) to characterize histopathology images, compactly representing a gigapixel whole-slide image (WSI) via salient features to enable computational pathology is still an urgent need and a significant challenge. In this paper, we propose a novel WSI characterization approach to represent, search and classify biopsy specimens using a compact feature vector (CFV) extracted from a multitude of deep feature vectors. Since the non-optimal design and training of deep networks may result in many irrelevant and redundant features and also cause computational bottlenecks, we proposed a low-cost stochastic method to optimize the output of pre-trained deep networks using evolutionary algorithms to generate a very small set of features to accurately represent each tissue/biopsy. The performance of the proposed method has been assessed using WSIs from the publicly available TCGA image data. In addition to acquiring a very compact representation (i.e., 11,000 times smaller than the initial set of features), the optimized features achieved 93% classification accuracy resulting in 11% improvement compared to the published benchmarks. The experimental results reveal that the proposed method can reliably select salient features of the biopsy sample. Furthermore, the proposed approach holds the potential to immensely facilitate the adoption of digital pathology by enabling a new generation of WSI representation for efficient storage and more user-friendly visualization.
•Deep learning increasingly influences in digital pathology workflow.•Compactly representing a WSI to enable computational pathology is an urgent need.•Evolutionary computation can optimize the output of pre-trained deep networks.•Irrelevant or redundant features are removed to encompass salient features.•Compact feature vectors achieved 93% classification accuracy. |
doi_str_mv | 10.1016/j.artmed.2022.102368 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2723161443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0933365722001294</els_id><sourcerecordid>2723161443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-29134a525d6267572937eb043cac83fa8b5cd21a8c9171b2214dc86ce5a57bf93</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwBgweWVJ8SexkQUJVuUiVWGC2HOckuHLjYDsVfXtSwsx0pPNfpP9D6JaSFSVU3O9WOqQ9NCtGGJtejIvyDC1oKXnGSkHO0YJUnGdcFPISXcW4I4TInIoF6jYH78Zkfa_DETcAA25BpzEAjuDAnBTc-oCN3w_aJBxgCBChT_pX8i3ubKcH-w0O273uIGLb48Z2NmmHB50-vfPd8RpdtNpFuPm7S_TxtHlfv2Tbt-fX9eM2M5xXKWMV5bkuWNEIJmQhWcUl1CTnRpuSt7qsC9MwqktTUUlrxmjemFIYKHQh67biS3Q39w7Bf40Qk9rbaMA53YMfo2KScSponvPJms9WE3yMAVo1hGlBOCpK1Imr2qmZqzpxVTPXKfYwx2CacbAQVDQWegONDRMv1Xj7f8EPFQqErg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723161443</pqid></control><display><type>article</type><title>Evolutionary deep feature selection for compact representation of gigapixel images in digital pathology</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bidgoli, Azam Asilian ; Rahnamayan, Shahryar ; Dehkharghanian, Taher ; Riasatian, Abtin ; Kalra, Shivam ; Zaveri, Manit ; Campbell, Clinton J.V. ; Parwani, Anil ; Pantanowitz, Liron ; Tizhoosh, H.R.</creator><creatorcontrib>Bidgoli, Azam Asilian ; Rahnamayan, Shahryar ; Dehkharghanian, Taher ; Riasatian, Abtin ; Kalra, Shivam ; Zaveri, Manit ; Campbell, Clinton J.V. ; Parwani, Anil ; Pantanowitz, Liron ; Tizhoosh, H.R.</creatorcontrib><description>Despite the recent progress in Deep Neural Networks (DNNs) to characterize histopathology images, compactly representing a gigapixel whole-slide image (WSI) via salient features to enable computational pathology is still an urgent need and a significant challenge. In this paper, we propose a novel WSI characterization approach to represent, search and classify biopsy specimens using a compact feature vector (CFV) extracted from a multitude of deep feature vectors. Since the non-optimal design and training of deep networks may result in many irrelevant and redundant features and also cause computational bottlenecks, we proposed a low-cost stochastic method to optimize the output of pre-trained deep networks using evolutionary algorithms to generate a very small set of features to accurately represent each tissue/biopsy. The performance of the proposed method has been assessed using WSIs from the publicly available TCGA image data. In addition to acquiring a very compact representation (i.e., 11,000 times smaller than the initial set of features), the optimized features achieved 93% classification accuracy resulting in 11% improvement compared to the published benchmarks. The experimental results reveal that the proposed method can reliably select salient features of the biopsy sample. Furthermore, the proposed approach holds the potential to immensely facilitate the adoption of digital pathology by enabling a new generation of WSI representation for efficient storage and more user-friendly visualization.
•Deep learning increasingly influences in digital pathology workflow.•Compactly representing a WSI to enable computational pathology is an urgent need.•Evolutionary computation can optimize the output of pre-trained deep networks.•Irrelevant or redundant features are removed to encompass salient features.•Compact feature vectors achieved 93% classification accuracy.</description><identifier>ISSN: 0933-3657</identifier><identifier>EISSN: 1873-2860</identifier><identifier>DOI: 10.1016/j.artmed.2022.102368</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Digital pathology ; Evolutionary computation ; Image representation ; Whole slide images</subject><ispartof>Artificial intelligence in medicine, 2022-10, Vol.132, p.102368-102368, Article 102368</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-29134a525d6267572937eb043cac83fa8b5cd21a8c9171b2214dc86ce5a57bf93</citedby><cites>FETCH-LOGICAL-c339t-29134a525d6267572937eb043cac83fa8b5cd21a8c9171b2214dc86ce5a57bf93</cites><orcidid>0000-0002-8896-1134 ; 0000-0001-5488-601X ; 0000-0002-8741-0154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.artmed.2022.102368$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bidgoli, Azam Asilian</creatorcontrib><creatorcontrib>Rahnamayan, Shahryar</creatorcontrib><creatorcontrib>Dehkharghanian, Taher</creatorcontrib><creatorcontrib>Riasatian, Abtin</creatorcontrib><creatorcontrib>Kalra, Shivam</creatorcontrib><creatorcontrib>Zaveri, Manit</creatorcontrib><creatorcontrib>Campbell, Clinton J.V.</creatorcontrib><creatorcontrib>Parwani, Anil</creatorcontrib><creatorcontrib>Pantanowitz, Liron</creatorcontrib><creatorcontrib>Tizhoosh, H.R.</creatorcontrib><title>Evolutionary deep feature selection for compact representation of gigapixel images in digital pathology</title><title>Artificial intelligence in medicine</title><description>Despite the recent progress in Deep Neural Networks (DNNs) to characterize histopathology images, compactly representing a gigapixel whole-slide image (WSI) via salient features to enable computational pathology is still an urgent need and a significant challenge. In this paper, we propose a novel WSI characterization approach to represent, search and classify biopsy specimens using a compact feature vector (CFV) extracted from a multitude of deep feature vectors. Since the non-optimal design and training of deep networks may result in many irrelevant and redundant features and also cause computational bottlenecks, we proposed a low-cost stochastic method to optimize the output of pre-trained deep networks using evolutionary algorithms to generate a very small set of features to accurately represent each tissue/biopsy. The performance of the proposed method has been assessed using WSIs from the publicly available TCGA image data. In addition to acquiring a very compact representation (i.e., 11,000 times smaller than the initial set of features), the optimized features achieved 93% classification accuracy resulting in 11% improvement compared to the published benchmarks. The experimental results reveal that the proposed method can reliably select salient features of the biopsy sample. Furthermore, the proposed approach holds the potential to immensely facilitate the adoption of digital pathology by enabling a new generation of WSI representation for efficient storage and more user-friendly visualization.
•Deep learning increasingly influences in digital pathology workflow.•Compactly representing a WSI to enable computational pathology is an urgent need.•Evolutionary computation can optimize the output of pre-trained deep networks.•Irrelevant or redundant features are removed to encompass salient features.•Compact feature vectors achieved 93% classification accuracy.</description><subject>Digital pathology</subject><subject>Evolutionary computation</subject><subject>Image representation</subject><subject>Whole slide images</subject><issn>0933-3657</issn><issn>1873-2860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwBgweWVJ8SexkQUJVuUiVWGC2HOckuHLjYDsVfXtSwsx0pPNfpP9D6JaSFSVU3O9WOqQ9NCtGGJtejIvyDC1oKXnGSkHO0YJUnGdcFPISXcW4I4TInIoF6jYH78Zkfa_DETcAA25BpzEAjuDAnBTc-oCN3w_aJBxgCBChT_pX8i3ubKcH-w0O273uIGLb48Z2NmmHB50-vfPd8RpdtNpFuPm7S_TxtHlfv2Tbt-fX9eM2M5xXKWMV5bkuWNEIJmQhWcUl1CTnRpuSt7qsC9MwqktTUUlrxmjemFIYKHQh67biS3Q39w7Bf40Qk9rbaMA53YMfo2KScSponvPJms9WE3yMAVo1hGlBOCpK1Imr2qmZqzpxVTPXKfYwx2CacbAQVDQWegONDRMv1Xj7f8EPFQqErg</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Bidgoli, Azam Asilian</creator><creator>Rahnamayan, Shahryar</creator><creator>Dehkharghanian, Taher</creator><creator>Riasatian, Abtin</creator><creator>Kalra, Shivam</creator><creator>Zaveri, Manit</creator><creator>Campbell, Clinton J.V.</creator><creator>Parwani, Anil</creator><creator>Pantanowitz, Liron</creator><creator>Tizhoosh, H.R.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8896-1134</orcidid><orcidid>https://orcid.org/0000-0001-5488-601X</orcidid><orcidid>https://orcid.org/0000-0002-8741-0154</orcidid></search><sort><creationdate>202210</creationdate><title>Evolutionary deep feature selection for compact representation of gigapixel images in digital pathology</title><author>Bidgoli, Azam Asilian ; Rahnamayan, Shahryar ; Dehkharghanian, Taher ; Riasatian, Abtin ; Kalra, Shivam ; Zaveri, Manit ; Campbell, Clinton J.V. ; Parwani, Anil ; Pantanowitz, Liron ; Tizhoosh, H.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-29134a525d6267572937eb043cac83fa8b5cd21a8c9171b2214dc86ce5a57bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Digital pathology</topic><topic>Evolutionary computation</topic><topic>Image representation</topic><topic>Whole slide images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bidgoli, Azam Asilian</creatorcontrib><creatorcontrib>Rahnamayan, Shahryar</creatorcontrib><creatorcontrib>Dehkharghanian, Taher</creatorcontrib><creatorcontrib>Riasatian, Abtin</creatorcontrib><creatorcontrib>Kalra, Shivam</creatorcontrib><creatorcontrib>Zaveri, Manit</creatorcontrib><creatorcontrib>Campbell, Clinton J.V.</creatorcontrib><creatorcontrib>Parwani, Anil</creatorcontrib><creatorcontrib>Pantanowitz, Liron</creatorcontrib><creatorcontrib>Tizhoosh, H.R.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Artificial intelligence in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bidgoli, Azam Asilian</au><au>Rahnamayan, Shahryar</au><au>Dehkharghanian, Taher</au><au>Riasatian, Abtin</au><au>Kalra, Shivam</au><au>Zaveri, Manit</au><au>Campbell, Clinton J.V.</au><au>Parwani, Anil</au><au>Pantanowitz, Liron</au><au>Tizhoosh, H.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary deep feature selection for compact representation of gigapixel images in digital pathology</atitle><jtitle>Artificial intelligence in medicine</jtitle><date>2022-10</date><risdate>2022</risdate><volume>132</volume><spage>102368</spage><epage>102368</epage><pages>102368-102368</pages><artnum>102368</artnum><issn>0933-3657</issn><eissn>1873-2860</eissn><abstract>Despite the recent progress in Deep Neural Networks (DNNs) to characterize histopathology images, compactly representing a gigapixel whole-slide image (WSI) via salient features to enable computational pathology is still an urgent need and a significant challenge. In this paper, we propose a novel WSI characterization approach to represent, search and classify biopsy specimens using a compact feature vector (CFV) extracted from a multitude of deep feature vectors. Since the non-optimal design and training of deep networks may result in many irrelevant and redundant features and also cause computational bottlenecks, we proposed a low-cost stochastic method to optimize the output of pre-trained deep networks using evolutionary algorithms to generate a very small set of features to accurately represent each tissue/biopsy. The performance of the proposed method has been assessed using WSIs from the publicly available TCGA image data. In addition to acquiring a very compact representation (i.e., 11,000 times smaller than the initial set of features), the optimized features achieved 93% classification accuracy resulting in 11% improvement compared to the published benchmarks. The experimental results reveal that the proposed method can reliably select salient features of the biopsy sample. Furthermore, the proposed approach holds the potential to immensely facilitate the adoption of digital pathology by enabling a new generation of WSI representation for efficient storage and more user-friendly visualization.
•Deep learning increasingly influences in digital pathology workflow.•Compactly representing a WSI to enable computational pathology is an urgent need.•Evolutionary computation can optimize the output of pre-trained deep networks.•Irrelevant or redundant features are removed to encompass salient features.•Compact feature vectors achieved 93% classification accuracy.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.artmed.2022.102368</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8896-1134</orcidid><orcidid>https://orcid.org/0000-0001-5488-601X</orcidid><orcidid>https://orcid.org/0000-0002-8741-0154</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-3657 |
ispartof | Artificial intelligence in medicine, 2022-10, Vol.132, p.102368-102368, Article 102368 |
issn | 0933-3657 1873-2860 |
language | eng |
recordid | cdi_proquest_miscellaneous_2723161443 |
source | Access via ScienceDirect (Elsevier) |
subjects | Digital pathology Evolutionary computation Image representation Whole slide images |
title | Evolutionary deep feature selection for compact representation of gigapixel images in digital pathology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20deep%20feature%20selection%20for%20compact%20representation%20of%20gigapixel%20images%20in%20digital%20pathology&rft.jtitle=Artificial%20intelligence%20in%20medicine&rft.au=Bidgoli,%20Azam%20Asilian&rft.date=2022-10&rft.volume=132&rft.spage=102368&rft.epage=102368&rft.pages=102368-102368&rft.artnum=102368&rft.issn=0933-3657&rft.eissn=1873-2860&rft_id=info:doi/10.1016/j.artmed.2022.102368&rft_dat=%3Cproquest_cross%3E2723161443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723161443&rft_id=info:pmid/&rft_els_id=S0933365722001294&rfr_iscdi=true |