A central limit theorem concerning uncertainty in estimates of individual admixture

The concept of individual admixture (IA) assumes that the genome of individuals is composed of alleles inherited from K ancestral populations. Each copy of each allele has the same chance qk to originate from population k, and together with the allele frequencies p in all populations at all M marker...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical population biology 2022-12, Vol.148, p.28-39
Hauptverfasser: Pfaffelhuber, Peter, Rohde, Angelika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The concept of individual admixture (IA) assumes that the genome of individuals is composed of alleles inherited from K ancestral populations. Each copy of each allele has the same chance qk to originate from population k, and together with the allele frequencies p in all populations at all M markers, comprises the admixture model. Here, we assume a supervised scheme, i.e. allele frequencies p are given through a reference database of size N, and q is estimated via maximum likelihood for a single sample. We study laws of large numbers and central limit theorems describing effects of finiteness of both, M and N, on the estimate of q. We recall results for the effect of finite M, and provide a central limit theorem for the effect of finite N, introduce a new way to express the uncertainty in estimates in standard barplots, give simulation results, and discuss applications in forensic genetics.
ISSN:0040-5809
1096-0325
DOI:10.1016/j.tpb.2022.09.003