Gatekeeper Residue Replacement in a Phosphite Transporter Enhances Mutational Robustness of the Biocontainment Strategy
Biocontainment is a key methodology to reduce environmental risk through the deliberate release of genetically modified microorganisms. Previously, we developed a phosphite (HPO3 2–)-dependent biocontainment strategy, by expressing a phosphite-specific transporter HtxBCDE and phosphite dehydrogenase...
Gespeichert in:
Veröffentlicht in: | ACS synthetic biology 2022-10, Vol.11 (10), p.3397-3404 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3404 |
---|---|
container_issue | 10 |
container_start_page | 3397 |
container_title | ACS synthetic biology |
container_volume | 11 |
creator | Hirota, Ryuichi Katsuura, Zen-ichiro Momokawa, Naoki Murakami, Hiroki Watanabe, Satoru Ishida, Takenori Ikeda, Takeshi Funabashi, Hisakage Kuroda, Akio |
description | Biocontainment is a key methodology to reduce environmental risk through the deliberate release of genetically modified microorganisms. Previously, we developed a phosphite (HPO3 2–)-dependent biocontainment strategy, by expressing a phosphite-specific transporter HtxBCDE and phosphite dehydrogenase in bacteria devoid of their indigenous phosphate (HPO4 2–) transporters. This strategy did not allow Escherichia coli to generate escape mutants (EMs) in growth media containing phosphate as a phosphorus source using an assay with a detection limit of 1.9 × 10–13. In this study, we found that the coexistence of a high dose of phosphate (>0.5 mM) with phosphite in the growth medium allows the phosphite-dependent E. coli strain to generate EMs at a frequency of approximately 5.4 × 10–10. In all EMs, the mutation was a single amino acid substitution of phenylalanine to cysteine or serine at position 210 of HtxC, the transmembrane domain protein of the phosphorus compound transporter HtxBCDE. Replacement of the HtxC F210 residue with the other 17 amino acids revealed that HtxC F210 is crucial in determining substrate specificity of HtxBCDE. Based on the finding of the role of HtxC F210 as a “gatekeeper” residue for this transporter, we demonstrate that the replacement of HtxC F210 with amino acids resulting from codons that require two simultaneous point mutations to generate phosphate permissive HtxC mutants can reduce the rate of EM generation to an undetectable level. These findings also provide novel insights into the functional classification of HtxBCDE as a noncanonical ATP-binding cassette transporter in which the transmembrane domain protein participates in substrate recognition. |
doi_str_mv | 10.1021/acssynbio.2c00296 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2723159663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723159663</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-65a0405b3de319563fbb3afbe5a8bb67dcc1b4961fb836cd134a4580681a8a913</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EolXpD-gF-cglxR9rb3KEqi1IRVSlPUdjZ8K6ZO3gcYT239ewS8WJucwcnvcd6WHsTIpzKZR8D55oF11I58oLoTr7gh0raWVjhNUv_7mP2CnRo6hjjDa6fc2OtFVCrdfqmP26hoI_EGfM_A4pDAvWPU_gcYux8BA58NtNonkTCvL7DJHmlEvFL-MGokfiX5YCJaQIE79LbqESkYinkZcN8o8h-RQLhPin71vJ9eH33Rv2aoSJ8PSwT9jD1eX9xafm5uv154sPNw1o3ZXGGhArYZweUMvOWD06p2F0aKB1zq4H76VbdVaOrtXWD1KvYGVaYVsJLXRSn7B3-945p58LUum3gTxOE0RMC_VqrbQ0nbW6onKP-pyIMo79nMMW8q6Xov-tvH9W3h-U18zbQ_3itjg8J_4KrkCzB2q2f0xLrpboP4VPF6SQoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723159663</pqid></control><display><type>article</type><title>Gatekeeper Residue Replacement in a Phosphite Transporter Enhances Mutational Robustness of the Biocontainment Strategy</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Hirota, Ryuichi ; Katsuura, Zen-ichiro ; Momokawa, Naoki ; Murakami, Hiroki ; Watanabe, Satoru ; Ishida, Takenori ; Ikeda, Takeshi ; Funabashi, Hisakage ; Kuroda, Akio</creator><creatorcontrib>Hirota, Ryuichi ; Katsuura, Zen-ichiro ; Momokawa, Naoki ; Murakami, Hiroki ; Watanabe, Satoru ; Ishida, Takenori ; Ikeda, Takeshi ; Funabashi, Hisakage ; Kuroda, Akio</creatorcontrib><description>Biocontainment is a key methodology to reduce environmental risk through the deliberate release of genetically modified microorganisms. Previously, we developed a phosphite (HPO3 2–)-dependent biocontainment strategy, by expressing a phosphite-specific transporter HtxBCDE and phosphite dehydrogenase in bacteria devoid of their indigenous phosphate (HPO4 2–) transporters. This strategy did not allow Escherichia coli to generate escape mutants (EMs) in growth media containing phosphate as a phosphorus source using an assay with a detection limit of 1.9 × 10–13. In this study, we found that the coexistence of a high dose of phosphate (>0.5 mM) with phosphite in the growth medium allows the phosphite-dependent E. coli strain to generate EMs at a frequency of approximately 5.4 × 10–10. In all EMs, the mutation was a single amino acid substitution of phenylalanine to cysteine or serine at position 210 of HtxC, the transmembrane domain protein of the phosphorus compound transporter HtxBCDE. Replacement of the HtxC F210 residue with the other 17 amino acids revealed that HtxC F210 is crucial in determining substrate specificity of HtxBCDE. Based on the finding of the role of HtxC F210 as a “gatekeeper” residue for this transporter, we demonstrate that the replacement of HtxC F210 with amino acids resulting from codons that require two simultaneous point mutations to generate phosphate permissive HtxC mutants can reduce the rate of EM generation to an undetectable level. These findings also provide novel insights into the functional classification of HtxBCDE as a noncanonical ATP-binding cassette transporter in which the transmembrane domain protein participates in substrate recognition.</description><identifier>ISSN: 2161-5063</identifier><identifier>EISSN: 2161-5063</identifier><identifier>DOI: 10.1021/acssynbio.2c00296</identifier><identifier>PMID: 36202772</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ATP-Binding Cassette Transporters - genetics ; Bacterial Proteins - metabolism ; Cysteine ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Mutation ; Phenylalanine - genetics ; Phosphates - metabolism ; Phosphites - metabolism ; Phosphorus - metabolism ; Serine - genetics</subject><ispartof>ACS synthetic biology, 2022-10, Vol.11 (10), p.3397-3404</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-65a0405b3de319563fbb3afbe5a8bb67dcc1b4961fb836cd134a4580681a8a913</citedby><cites>FETCH-LOGICAL-a339t-65a0405b3de319563fbb3afbe5a8bb67dcc1b4961fb836cd134a4580681a8a913</cites><orcidid>0000-0003-2330-1503 ; 0000-0003-3959-5892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssynbio.2c00296$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssynbio.2c00296$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36202772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirota, Ryuichi</creatorcontrib><creatorcontrib>Katsuura, Zen-ichiro</creatorcontrib><creatorcontrib>Momokawa, Naoki</creatorcontrib><creatorcontrib>Murakami, Hiroki</creatorcontrib><creatorcontrib>Watanabe, Satoru</creatorcontrib><creatorcontrib>Ishida, Takenori</creatorcontrib><creatorcontrib>Ikeda, Takeshi</creatorcontrib><creatorcontrib>Funabashi, Hisakage</creatorcontrib><creatorcontrib>Kuroda, Akio</creatorcontrib><title>Gatekeeper Residue Replacement in a Phosphite Transporter Enhances Mutational Robustness of the Biocontainment Strategy</title><title>ACS synthetic biology</title><addtitle>ACS Synth. Biol</addtitle><description>Biocontainment is a key methodology to reduce environmental risk through the deliberate release of genetically modified microorganisms. Previously, we developed a phosphite (HPO3 2–)-dependent biocontainment strategy, by expressing a phosphite-specific transporter HtxBCDE and phosphite dehydrogenase in bacteria devoid of their indigenous phosphate (HPO4 2–) transporters. This strategy did not allow Escherichia coli to generate escape mutants (EMs) in growth media containing phosphate as a phosphorus source using an assay with a detection limit of 1.9 × 10–13. In this study, we found that the coexistence of a high dose of phosphate (>0.5 mM) with phosphite in the growth medium allows the phosphite-dependent E. coli strain to generate EMs at a frequency of approximately 5.4 × 10–10. In all EMs, the mutation was a single amino acid substitution of phenylalanine to cysteine or serine at position 210 of HtxC, the transmembrane domain protein of the phosphorus compound transporter HtxBCDE. Replacement of the HtxC F210 residue with the other 17 amino acids revealed that HtxC F210 is crucial in determining substrate specificity of HtxBCDE. Based on the finding of the role of HtxC F210 as a “gatekeeper” residue for this transporter, we demonstrate that the replacement of HtxC F210 with amino acids resulting from codons that require two simultaneous point mutations to generate phosphate permissive HtxC mutants can reduce the rate of EM generation to an undetectable level. These findings also provide novel insights into the functional classification of HtxBCDE as a noncanonical ATP-binding cassette transporter in which the transmembrane domain protein participates in substrate recognition.</description><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cysteine</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Mutation</subject><subject>Phenylalanine - genetics</subject><subject>Phosphates - metabolism</subject><subject>Phosphites - metabolism</subject><subject>Phosphorus - metabolism</subject><subject>Serine - genetics</subject><issn>2161-5063</issn><issn>2161-5063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi0EolXpD-gF-cglxR9rb3KEqi1IRVSlPUdjZ8K6ZO3gcYT239ewS8WJucwcnvcd6WHsTIpzKZR8D55oF11I58oLoTr7gh0raWVjhNUv_7mP2CnRo6hjjDa6fc2OtFVCrdfqmP26hoI_EGfM_A4pDAvWPU_gcYux8BA58NtNonkTCvL7DJHmlEvFL-MGokfiX5YCJaQIE79LbqESkYinkZcN8o8h-RQLhPin71vJ9eH33Rv2aoSJ8PSwT9jD1eX9xafm5uv154sPNw1o3ZXGGhArYZweUMvOWD06p2F0aKB1zq4H76VbdVaOrtXWD1KvYGVaYVsJLXRSn7B3-945p58LUum3gTxOE0RMC_VqrbQ0nbW6onKP-pyIMo79nMMW8q6Xov-tvH9W3h-U18zbQ_3itjg8J_4KrkCzB2q2f0xLrpboP4VPF6SQoA</recordid><startdate>20221021</startdate><enddate>20221021</enddate><creator>Hirota, Ryuichi</creator><creator>Katsuura, Zen-ichiro</creator><creator>Momokawa, Naoki</creator><creator>Murakami, Hiroki</creator><creator>Watanabe, Satoru</creator><creator>Ishida, Takenori</creator><creator>Ikeda, Takeshi</creator><creator>Funabashi, Hisakage</creator><creator>Kuroda, Akio</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2330-1503</orcidid><orcidid>https://orcid.org/0000-0003-3959-5892</orcidid></search><sort><creationdate>20221021</creationdate><title>Gatekeeper Residue Replacement in a Phosphite Transporter Enhances Mutational Robustness of the Biocontainment Strategy</title><author>Hirota, Ryuichi ; Katsuura, Zen-ichiro ; Momokawa, Naoki ; Murakami, Hiroki ; Watanabe, Satoru ; Ishida, Takenori ; Ikeda, Takeshi ; Funabashi, Hisakage ; Kuroda, Akio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-65a0405b3de319563fbb3afbe5a8bb67dcc1b4961fb836cd134a4580681a8a913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cysteine</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Mutation</topic><topic>Phenylalanine - genetics</topic><topic>Phosphates - metabolism</topic><topic>Phosphites - metabolism</topic><topic>Phosphorus - metabolism</topic><topic>Serine - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirota, Ryuichi</creatorcontrib><creatorcontrib>Katsuura, Zen-ichiro</creatorcontrib><creatorcontrib>Momokawa, Naoki</creatorcontrib><creatorcontrib>Murakami, Hiroki</creatorcontrib><creatorcontrib>Watanabe, Satoru</creatorcontrib><creatorcontrib>Ishida, Takenori</creatorcontrib><creatorcontrib>Ikeda, Takeshi</creatorcontrib><creatorcontrib>Funabashi, Hisakage</creatorcontrib><creatorcontrib>Kuroda, Akio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirota, Ryuichi</au><au>Katsuura, Zen-ichiro</au><au>Momokawa, Naoki</au><au>Murakami, Hiroki</au><au>Watanabe, Satoru</au><au>Ishida, Takenori</au><au>Ikeda, Takeshi</au><au>Funabashi, Hisakage</au><au>Kuroda, Akio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gatekeeper Residue Replacement in a Phosphite Transporter Enhances Mutational Robustness of the Biocontainment Strategy</atitle><jtitle>ACS synthetic biology</jtitle><addtitle>ACS Synth. Biol</addtitle><date>2022-10-21</date><risdate>2022</risdate><volume>11</volume><issue>10</issue><spage>3397</spage><epage>3404</epage><pages>3397-3404</pages><issn>2161-5063</issn><eissn>2161-5063</eissn><abstract>Biocontainment is a key methodology to reduce environmental risk through the deliberate release of genetically modified microorganisms. Previously, we developed a phosphite (HPO3 2–)-dependent biocontainment strategy, by expressing a phosphite-specific transporter HtxBCDE and phosphite dehydrogenase in bacteria devoid of their indigenous phosphate (HPO4 2–) transporters. This strategy did not allow Escherichia coli to generate escape mutants (EMs) in growth media containing phosphate as a phosphorus source using an assay with a detection limit of 1.9 × 10–13. In this study, we found that the coexistence of a high dose of phosphate (>0.5 mM) with phosphite in the growth medium allows the phosphite-dependent E. coli strain to generate EMs at a frequency of approximately 5.4 × 10–10. In all EMs, the mutation was a single amino acid substitution of phenylalanine to cysteine or serine at position 210 of HtxC, the transmembrane domain protein of the phosphorus compound transporter HtxBCDE. Replacement of the HtxC F210 residue with the other 17 amino acids revealed that HtxC F210 is crucial in determining substrate specificity of HtxBCDE. Based on the finding of the role of HtxC F210 as a “gatekeeper” residue for this transporter, we demonstrate that the replacement of HtxC F210 with amino acids resulting from codons that require two simultaneous point mutations to generate phosphate permissive HtxC mutants can reduce the rate of EM generation to an undetectable level. These findings also provide novel insights into the functional classification of HtxBCDE as a noncanonical ATP-binding cassette transporter in which the transmembrane domain protein participates in substrate recognition.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36202772</pmid><doi>10.1021/acssynbio.2c00296</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2330-1503</orcidid><orcidid>https://orcid.org/0000-0003-3959-5892</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2161-5063 |
ispartof | ACS synthetic biology, 2022-10, Vol.11 (10), p.3397-3404 |
issn | 2161-5063 2161-5063 |
language | eng |
recordid | cdi_proquest_miscellaneous_2723159663 |
source | American Chemical Society; MEDLINE |
subjects | ATP-Binding Cassette Transporters - genetics Bacterial Proteins - metabolism Cysteine Escherichia coli - genetics Escherichia coli - metabolism Mutation Phenylalanine - genetics Phosphates - metabolism Phosphites - metabolism Phosphorus - metabolism Serine - genetics |
title | Gatekeeper Residue Replacement in a Phosphite Transporter Enhances Mutational Robustness of the Biocontainment Strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gatekeeper%20Residue%20Replacement%20in%20a%20Phosphite%20Transporter%20Enhances%20Mutational%20Robustness%20of%20the%20Biocontainment%20Strategy&rft.jtitle=ACS%20synthetic%20biology&rft.au=Hirota,%20Ryuichi&rft.date=2022-10-21&rft.volume=11&rft.issue=10&rft.spage=3397&rft.epage=3404&rft.pages=3397-3404&rft.issn=2161-5063&rft.eissn=2161-5063&rft_id=info:doi/10.1021/acssynbio.2c00296&rft_dat=%3Cproquest_cross%3E2723159663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723159663&rft_id=info:pmid/36202772&rfr_iscdi=true |