Gatekeeper Residue Replacement in a Phosphite Transporter Enhances Mutational Robustness of the Biocontainment Strategy

Biocontainment is a key methodology to reduce environmental risk through the deliberate release of genetically modified microorganisms. Previously, we developed a phosphite (HPO3 2–)-dependent biocontainment strategy, by expressing a phosphite-specific transporter HtxBCDE and phosphite dehydrogenase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS synthetic biology 2022-10, Vol.11 (10), p.3397-3404
Hauptverfasser: Hirota, Ryuichi, Katsuura, Zen-ichiro, Momokawa, Naoki, Murakami, Hiroki, Watanabe, Satoru, Ishida, Takenori, Ikeda, Takeshi, Funabashi, Hisakage, Kuroda, Akio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3404
container_issue 10
container_start_page 3397
container_title ACS synthetic biology
container_volume 11
creator Hirota, Ryuichi
Katsuura, Zen-ichiro
Momokawa, Naoki
Murakami, Hiroki
Watanabe, Satoru
Ishida, Takenori
Ikeda, Takeshi
Funabashi, Hisakage
Kuroda, Akio
description Biocontainment is a key methodology to reduce environmental risk through the deliberate release of genetically modified microorganisms. Previously, we developed a phosphite (HPO3 2–)-dependent biocontainment strategy, by expressing a phosphite-specific transporter HtxBCDE and phosphite dehydrogenase in bacteria devoid of their indigenous phosphate (HPO4 2–) transporters. This strategy did not allow Escherichia coli to generate escape mutants (EMs) in growth media containing phosphate as a phosphorus source using an assay with a detection limit of 1.9 × 10–13. In this study, we found that the coexistence of a high dose of phosphate (>0.5 mM) with phosphite in the growth medium allows the phosphite-dependent E. coli strain to generate EMs at a frequency of approximately 5.4 × 10–10. In all EMs, the mutation was a single amino acid substitution of phenylalanine to cysteine or serine at position 210 of HtxC, the transmembrane domain protein of the phosphorus compound transporter HtxBCDE. Replacement of the HtxC F210 residue with the other 17 amino acids revealed that HtxC F210 is crucial in determining substrate specificity of HtxBCDE. Based on the finding of the role of HtxC F210 as a “gatekeeper” residue for this transporter, we demonstrate that the replacement of HtxC F210 with amino acids resulting from codons that require two simultaneous point mutations to generate phosphate permissive HtxC mutants can reduce the rate of EM generation to an undetectable level. These findings also provide novel insights into the functional classification of HtxBCDE as a noncanonical ATP-binding cassette transporter in which the transmembrane domain protein participates in substrate recognition.
doi_str_mv 10.1021/acssynbio.2c00296
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2723159663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2723159663</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-65a0405b3de319563fbb3afbe5a8bb67dcc1b4961fb836cd134a4580681a8a913</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EolXpD-gF-cglxR9rb3KEqi1IRVSlPUdjZ8K6ZO3gcYT239ewS8WJucwcnvcd6WHsTIpzKZR8D55oF11I58oLoTr7gh0raWVjhNUv_7mP2CnRo6hjjDa6fc2OtFVCrdfqmP26hoI_EGfM_A4pDAvWPU_gcYux8BA58NtNonkTCvL7DJHmlEvFL-MGokfiX5YCJaQIE79LbqESkYinkZcN8o8h-RQLhPin71vJ9eH33Rv2aoSJ8PSwT9jD1eX9xafm5uv154sPNw1o3ZXGGhArYZweUMvOWD06p2F0aKB1zq4H76VbdVaOrtXWD1KvYGVaYVsJLXRSn7B3-945p58LUum3gTxOE0RMC_VqrbQ0nbW6onKP-pyIMo79nMMW8q6Xov-tvH9W3h-U18zbQ_3itjg8J_4KrkCzB2q2f0xLrpboP4VPF6SQoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2723159663</pqid></control><display><type>article</type><title>Gatekeeper Residue Replacement in a Phosphite Transporter Enhances Mutational Robustness of the Biocontainment Strategy</title><source>American Chemical Society</source><source>MEDLINE</source><creator>Hirota, Ryuichi ; Katsuura, Zen-ichiro ; Momokawa, Naoki ; Murakami, Hiroki ; Watanabe, Satoru ; Ishida, Takenori ; Ikeda, Takeshi ; Funabashi, Hisakage ; Kuroda, Akio</creator><creatorcontrib>Hirota, Ryuichi ; Katsuura, Zen-ichiro ; Momokawa, Naoki ; Murakami, Hiroki ; Watanabe, Satoru ; Ishida, Takenori ; Ikeda, Takeshi ; Funabashi, Hisakage ; Kuroda, Akio</creatorcontrib><description>Biocontainment is a key methodology to reduce environmental risk through the deliberate release of genetically modified microorganisms. Previously, we developed a phosphite (HPO3 2–)-dependent biocontainment strategy, by expressing a phosphite-specific transporter HtxBCDE and phosphite dehydrogenase in bacteria devoid of their indigenous phosphate (HPO4 2–) transporters. This strategy did not allow Escherichia coli to generate escape mutants (EMs) in growth media containing phosphate as a phosphorus source using an assay with a detection limit of 1.9 × 10–13. In this study, we found that the coexistence of a high dose of phosphate (&gt;0.5 mM) with phosphite in the growth medium allows the phosphite-dependent E. coli strain to generate EMs at a frequency of approximately 5.4 × 10–10. In all EMs, the mutation was a single amino acid substitution of phenylalanine to cysteine or serine at position 210 of HtxC, the transmembrane domain protein of the phosphorus compound transporter HtxBCDE. Replacement of the HtxC F210 residue with the other 17 amino acids revealed that HtxC F210 is crucial in determining substrate specificity of HtxBCDE. Based on the finding of the role of HtxC F210 as a “gatekeeper” residue for this transporter, we demonstrate that the replacement of HtxC F210 with amino acids resulting from codons that require two simultaneous point mutations to generate phosphate permissive HtxC mutants can reduce the rate of EM generation to an undetectable level. These findings also provide novel insights into the functional classification of HtxBCDE as a noncanonical ATP-binding cassette transporter in which the transmembrane domain protein participates in substrate recognition.</description><identifier>ISSN: 2161-5063</identifier><identifier>EISSN: 2161-5063</identifier><identifier>DOI: 10.1021/acssynbio.2c00296</identifier><identifier>PMID: 36202772</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ATP-Binding Cassette Transporters - genetics ; Bacterial Proteins - metabolism ; Cysteine ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Mutation ; Phenylalanine - genetics ; Phosphates - metabolism ; Phosphites - metabolism ; Phosphorus - metabolism ; Serine - genetics</subject><ispartof>ACS synthetic biology, 2022-10, Vol.11 (10), p.3397-3404</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-65a0405b3de319563fbb3afbe5a8bb67dcc1b4961fb836cd134a4580681a8a913</citedby><cites>FETCH-LOGICAL-a339t-65a0405b3de319563fbb3afbe5a8bb67dcc1b4961fb836cd134a4580681a8a913</cites><orcidid>0000-0003-2330-1503 ; 0000-0003-3959-5892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssynbio.2c00296$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssynbio.2c00296$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36202772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirota, Ryuichi</creatorcontrib><creatorcontrib>Katsuura, Zen-ichiro</creatorcontrib><creatorcontrib>Momokawa, Naoki</creatorcontrib><creatorcontrib>Murakami, Hiroki</creatorcontrib><creatorcontrib>Watanabe, Satoru</creatorcontrib><creatorcontrib>Ishida, Takenori</creatorcontrib><creatorcontrib>Ikeda, Takeshi</creatorcontrib><creatorcontrib>Funabashi, Hisakage</creatorcontrib><creatorcontrib>Kuroda, Akio</creatorcontrib><title>Gatekeeper Residue Replacement in a Phosphite Transporter Enhances Mutational Robustness of the Biocontainment Strategy</title><title>ACS synthetic biology</title><addtitle>ACS Synth. Biol</addtitle><description>Biocontainment is a key methodology to reduce environmental risk through the deliberate release of genetically modified microorganisms. Previously, we developed a phosphite (HPO3 2–)-dependent biocontainment strategy, by expressing a phosphite-specific transporter HtxBCDE and phosphite dehydrogenase in bacteria devoid of their indigenous phosphate (HPO4 2–) transporters. This strategy did not allow Escherichia coli to generate escape mutants (EMs) in growth media containing phosphate as a phosphorus source using an assay with a detection limit of 1.9 × 10–13. In this study, we found that the coexistence of a high dose of phosphate (&gt;0.5 mM) with phosphite in the growth medium allows the phosphite-dependent E. coli strain to generate EMs at a frequency of approximately 5.4 × 10–10. In all EMs, the mutation was a single amino acid substitution of phenylalanine to cysteine or serine at position 210 of HtxC, the transmembrane domain protein of the phosphorus compound transporter HtxBCDE. Replacement of the HtxC F210 residue with the other 17 amino acids revealed that HtxC F210 is crucial in determining substrate specificity of HtxBCDE. Based on the finding of the role of HtxC F210 as a “gatekeeper” residue for this transporter, we demonstrate that the replacement of HtxC F210 with amino acids resulting from codons that require two simultaneous point mutations to generate phosphate permissive HtxC mutants can reduce the rate of EM generation to an undetectable level. These findings also provide novel insights into the functional classification of HtxBCDE as a noncanonical ATP-binding cassette transporter in which the transmembrane domain protein participates in substrate recognition.</description><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cysteine</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Mutation</subject><subject>Phenylalanine - genetics</subject><subject>Phosphates - metabolism</subject><subject>Phosphites - metabolism</subject><subject>Phosphorus - metabolism</subject><subject>Serine - genetics</subject><issn>2161-5063</issn><issn>2161-5063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi0EolXpD-gF-cglxR9rb3KEqi1IRVSlPUdjZ8K6ZO3gcYT239ewS8WJucwcnvcd6WHsTIpzKZR8D55oF11I58oLoTr7gh0raWVjhNUv_7mP2CnRo6hjjDa6fc2OtFVCrdfqmP26hoI_EGfM_A4pDAvWPU_gcYux8BA58NtNonkTCvL7DJHmlEvFL-MGokfiX5YCJaQIE79LbqESkYinkZcN8o8h-RQLhPin71vJ9eH33Rv2aoSJ8PSwT9jD1eX9xafm5uv154sPNw1o3ZXGGhArYZweUMvOWD06p2F0aKB1zq4H76VbdVaOrtXWD1KvYGVaYVsJLXRSn7B3-945p58LUum3gTxOE0RMC_VqrbQ0nbW6onKP-pyIMo79nMMW8q6Xov-tvH9W3h-U18zbQ_3itjg8J_4KrkCzB2q2f0xLrpboP4VPF6SQoA</recordid><startdate>20221021</startdate><enddate>20221021</enddate><creator>Hirota, Ryuichi</creator><creator>Katsuura, Zen-ichiro</creator><creator>Momokawa, Naoki</creator><creator>Murakami, Hiroki</creator><creator>Watanabe, Satoru</creator><creator>Ishida, Takenori</creator><creator>Ikeda, Takeshi</creator><creator>Funabashi, Hisakage</creator><creator>Kuroda, Akio</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2330-1503</orcidid><orcidid>https://orcid.org/0000-0003-3959-5892</orcidid></search><sort><creationdate>20221021</creationdate><title>Gatekeeper Residue Replacement in a Phosphite Transporter Enhances Mutational Robustness of the Biocontainment Strategy</title><author>Hirota, Ryuichi ; Katsuura, Zen-ichiro ; Momokawa, Naoki ; Murakami, Hiroki ; Watanabe, Satoru ; Ishida, Takenori ; Ikeda, Takeshi ; Funabashi, Hisakage ; Kuroda, Akio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-65a0405b3de319563fbb3afbe5a8bb67dcc1b4961fb836cd134a4580681a8a913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cysteine</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Mutation</topic><topic>Phenylalanine - genetics</topic><topic>Phosphates - metabolism</topic><topic>Phosphites - metabolism</topic><topic>Phosphorus - metabolism</topic><topic>Serine - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirota, Ryuichi</creatorcontrib><creatorcontrib>Katsuura, Zen-ichiro</creatorcontrib><creatorcontrib>Momokawa, Naoki</creatorcontrib><creatorcontrib>Murakami, Hiroki</creatorcontrib><creatorcontrib>Watanabe, Satoru</creatorcontrib><creatorcontrib>Ishida, Takenori</creatorcontrib><creatorcontrib>Ikeda, Takeshi</creatorcontrib><creatorcontrib>Funabashi, Hisakage</creatorcontrib><creatorcontrib>Kuroda, Akio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirota, Ryuichi</au><au>Katsuura, Zen-ichiro</au><au>Momokawa, Naoki</au><au>Murakami, Hiroki</au><au>Watanabe, Satoru</au><au>Ishida, Takenori</au><au>Ikeda, Takeshi</au><au>Funabashi, Hisakage</au><au>Kuroda, Akio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gatekeeper Residue Replacement in a Phosphite Transporter Enhances Mutational Robustness of the Biocontainment Strategy</atitle><jtitle>ACS synthetic biology</jtitle><addtitle>ACS Synth. Biol</addtitle><date>2022-10-21</date><risdate>2022</risdate><volume>11</volume><issue>10</issue><spage>3397</spage><epage>3404</epage><pages>3397-3404</pages><issn>2161-5063</issn><eissn>2161-5063</eissn><abstract>Biocontainment is a key methodology to reduce environmental risk through the deliberate release of genetically modified microorganisms. Previously, we developed a phosphite (HPO3 2–)-dependent biocontainment strategy, by expressing a phosphite-specific transporter HtxBCDE and phosphite dehydrogenase in bacteria devoid of their indigenous phosphate (HPO4 2–) transporters. This strategy did not allow Escherichia coli to generate escape mutants (EMs) in growth media containing phosphate as a phosphorus source using an assay with a detection limit of 1.9 × 10–13. In this study, we found that the coexistence of a high dose of phosphate (&gt;0.5 mM) with phosphite in the growth medium allows the phosphite-dependent E. coli strain to generate EMs at a frequency of approximately 5.4 × 10–10. In all EMs, the mutation was a single amino acid substitution of phenylalanine to cysteine or serine at position 210 of HtxC, the transmembrane domain protein of the phosphorus compound transporter HtxBCDE. Replacement of the HtxC F210 residue with the other 17 amino acids revealed that HtxC F210 is crucial in determining substrate specificity of HtxBCDE. Based on the finding of the role of HtxC F210 as a “gatekeeper” residue for this transporter, we demonstrate that the replacement of HtxC F210 with amino acids resulting from codons that require two simultaneous point mutations to generate phosphate permissive HtxC mutants can reduce the rate of EM generation to an undetectable level. These findings also provide novel insights into the functional classification of HtxBCDE as a noncanonical ATP-binding cassette transporter in which the transmembrane domain protein participates in substrate recognition.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36202772</pmid><doi>10.1021/acssynbio.2c00296</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2330-1503</orcidid><orcidid>https://orcid.org/0000-0003-3959-5892</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2161-5063
ispartof ACS synthetic biology, 2022-10, Vol.11 (10), p.3397-3404
issn 2161-5063
2161-5063
language eng
recordid cdi_proquest_miscellaneous_2723159663
source American Chemical Society; MEDLINE
subjects ATP-Binding Cassette Transporters - genetics
Bacterial Proteins - metabolism
Cysteine
Escherichia coli - genetics
Escherichia coli - metabolism
Mutation
Phenylalanine - genetics
Phosphates - metabolism
Phosphites - metabolism
Phosphorus - metabolism
Serine - genetics
title Gatekeeper Residue Replacement in a Phosphite Transporter Enhances Mutational Robustness of the Biocontainment Strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gatekeeper%20Residue%20Replacement%20in%20a%20Phosphite%20Transporter%20Enhances%20Mutational%20Robustness%20of%20the%20Biocontainment%20Strategy&rft.jtitle=ACS%20synthetic%20biology&rft.au=Hirota,%20Ryuichi&rft.date=2022-10-21&rft.volume=11&rft.issue=10&rft.spage=3397&rft.epage=3404&rft.pages=3397-3404&rft.issn=2161-5063&rft.eissn=2161-5063&rft_id=info:doi/10.1021/acssynbio.2c00296&rft_dat=%3Cproquest_cross%3E2723159663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2723159663&rft_id=info:pmid/36202772&rfr_iscdi=true