Machine learning methods for efficient and automated in situ monitoring of peach flowering phenology

•Image colors vary dramatically at different BBCH flowering phenological stages.•A random forest model classifies BBCH stages by image color ranges accurately.•Growing degree days and biological growth time improve the model accuracy.•In situ flowering phenology monitoring is applicable for peach br...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture 2022-11, Vol.202, p.107370, Article 107370
Hauptverfasser: Zhu, Yihang, Chen, Miaojin, Gu, Qing, Zhao, Yiying, Zhang, Xiaobin, Sun, Qinan, Gu, Xianbin, Zheng, Kefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!