Classification ability of single hidden layer feedforward neural networks
Multilayer perceptrons with hard-limiting (signum) activation functions can form complex decision regions. It is well known that a three-layer perceptron (two hidden layers) can form arbitrary disjoint decision regions and a two-layer perceptron (one hidden layer) can form single convex decision reg...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2000-05, Vol.11 (3), p.799-801 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multilayer perceptrons with hard-limiting (signum) activation functions can form complex decision regions. It is well known that a three-layer perceptron (two hidden layers) can form arbitrary disjoint decision regions and a two-layer perceptron (one hidden layer) can form single convex decision regions. This paper further proves that single hidden layer feedforward neural networks (SLFN) with any continuous bounded nonconstant activation function or any arbitrary bounded (continuous or not continuous) activation function which has unequal limits at infinities (not just perceptrons) can form disjoint decision regions with arbitrary shapes in multidimensional cases, SLFN with some unbounded activation function can also form disjoint decision regions with arbitrary shapes. |
---|---|
ISSN: | 1045-9227 2162-237X 1941-0093 2162-2388 |
DOI: | 10.1109/72.846750 |