Reversible Regulation of the Reactive Oxygen Species Level Using a Semiconductor Heterojunction
Here, we proposed a novel solution for reversible regulation of the reactive oxygen species (ROS) level using a semiconductor heterojunction. Two metal-based ROS scavengers containing n-type CeO2 nanoparticles and n-type Cu-doped diatom biosilica (Cu-DBs) were integrated by a hydrothermal method to...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-10, Vol.14 (41), p.46324-46339 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here, we proposed a novel solution for reversible regulation of the reactive oxygen species (ROS) level using a semiconductor heterojunction. Two metal-based ROS scavengers containing n-type CeO2 nanoparticles and n-type Cu-doped diatom biosilica (Cu-DBs) were integrated by a hydrothermal method to form a typical n–n semiconductor heterojunction (Ce/Cu-DBs). Unlike the control of the ROS level by a single ROS scavenger or ROS-generating agent, Ce/Cu-DBs could quickly eliminate ROS by cascade catalytic reaction, which readily switched to ROS generation through a near-infrared (NIR)-triggered photocatalytic effect. This NIR mediated ROS regulation system provided a noninvasive strategy for reversible control of the ROS level in vitro and in vivo. The Ce/Cu-DBs could relieve cellular oxidative stress by clearing local excessive ROS while inhibiting bacterial growth by increasing ROS levels under NIR radiation. Benefiting from the reversible regulatory effect of Ce/Cu-DBs, programmable healing of infected wounds was realized via on-demand anti-infection and inflammation reduction. This work provided a general method with highly spatiotemporal resolution to a remote and sustainable control ROS level, which had great potential for the biomedical field and regulation of chemical reactions. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c13956 |