Imperfection sensitivity and probabilistic variation of tensile strength of steel members
Elastic stability theory is applied to description of tensile strength variation in steel members due to variation of initial imperfections, despite criticism on the occurrence of unloading due to plastic instability. In numerical simulation of such members, the maximum load is attained at a limit p...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2002-03, Vol.39 (6), p.1651-1671 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1671 |
---|---|
container_issue | 6 |
container_start_page | 1651 |
container_title | International journal of solids and structures |
container_volume | 39 |
creator | Okazawa, Shigenobu Oide, Kai Ikeda, Kiyohiro Terada, Kenjiro |
description | Elastic stability theory is applied to description of tensile strength variation in steel members due to variation of initial imperfections, despite criticism on the occurrence of unloading due to plastic instability. In numerical simulation of such members, the maximum load is attained at a limit point or a hilltop bifurcation point. This load is not much different for either type of point; hence, little attention has been paid to the type of points up to now. Yet it is noteworthy that these two types of points follow different imperfection sensitivity laws within the framework of elastic stability theory. Numerical experiments on steel members undergoing plastic deformation are conducted to ensure that empirical imperfection sensitivities for these members agree well with those sensitivity laws. This assesses applicability of elastic stability theory to description of plastic instability behaviors of steel members. Moreover, empirical histograms of steel members obtained through Monte-Carlo simulations are compared with theoretical probabilities of maximum loads, which are a normal distribution for the limit point and a Weibull-like one for the hilltop point. Therefore, elastic stability theory is useful to describe tensile strength variation of steel members. |
doi_str_mv | 10.1016/S0020-7683(01)00258-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27221721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002076830100258X</els_id><sourcerecordid>27218421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-80fc01217266a9093729faacd8bd536f1a3be8afc93d4aa4bbbbf854a906c4003</originalsourceid><addsrcrecordid>eNqNkV1LHTEQhkOp0FPtTyjsTYterE42-5FciYhfIPTCFuxVmM1OamQ_TjPxgP_e3XOkXtrcDAnPvBOeEeKrhGMJsj65Ayggb2qtDkEezZdK5_cfxErqxuSFLOuPYvUP-SQ-Mz8CQKkMrMTvm2FN0ZNLYRozppFDCpuQnjMcu2wdpxbb0AdOwWUbjAG33OSztKA9ZZwijX_Sw_LGiajPBhpainwg9jz2TF9e6774dXnx8_w6v_1xdXN-dps7ZUzKNXgHspBNUddowKimMB7RdbrtKlV7iaoljd4Z1ZWIZTsfr6tyZmtXAqh98X2XO3_27xNxskNgR32PI01PbIumWNLl_4BSl1uw2oEuTsyRvF3HMGB8thLsYtxujdtFpwVpt8bt_dz37XUAssPeRxxd4LdmVSlt1JJ_uuNo1rIJFC27QKOjLsR5EbabwjuTXgDQJ5cZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27218421</pqid></control><display><type>article</type><title>Imperfection sensitivity and probabilistic variation of tensile strength of steel members</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Okazawa, Shigenobu ; Oide, Kai ; Ikeda, Kiyohiro ; Terada, Kenjiro</creator><creatorcontrib>Okazawa, Shigenobu ; Oide, Kai ; Ikeda, Kiyohiro ; Terada, Kenjiro</creatorcontrib><description>Elastic stability theory is applied to description of tensile strength variation in steel members due to variation of initial imperfections, despite criticism on the occurrence of unloading due to plastic instability. In numerical simulation of such members, the maximum load is attained at a limit point or a hilltop bifurcation point. This load is not much different for either type of point; hence, little attention has been paid to the type of points up to now. Yet it is noteworthy that these two types of points follow different imperfection sensitivity laws within the framework of elastic stability theory. Numerical experiments on steel members undergoing plastic deformation are conducted to ensure that empirical imperfection sensitivities for these members agree well with those sensitivity laws. This assesses applicability of elastic stability theory to description of plastic instability behaviors of steel members. Moreover, empirical histograms of steel members obtained through Monte-Carlo simulations are compared with theoretical probabilities of maximum loads, which are a normal distribution for the limit point and a Weibull-like one for the hilltop point. Therefore, elastic stability theory is useful to describe tensile strength variation of steel members.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/S0020-7683(01)00258-X</identifier><identifier>CODEN: IJSOAD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Buckling ; Buildings. Public works ; Computation methods. Tables. Charts ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Hilltop bifurcation ; Imperfection sensitivity ; Physics ; Probabilistic variation ; Solid mechanics ; Static buckling and instability ; Steel member ; Structural analysis. Stresses ; Structural and continuum mechanics ; Tensile strength</subject><ispartof>International journal of solids and structures, 2002-03, Vol.39 (6), p.1651-1671</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-80fc01217266a9093729faacd8bd536f1a3be8afc93d4aa4bbbbf854a906c4003</citedby><cites>FETCH-LOGICAL-c399t-80fc01217266a9093729faacd8bd536f1a3be8afc93d4aa4bbbbf854a906c4003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7683(01)00258-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13538931$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Okazawa, Shigenobu</creatorcontrib><creatorcontrib>Oide, Kai</creatorcontrib><creatorcontrib>Ikeda, Kiyohiro</creatorcontrib><creatorcontrib>Terada, Kenjiro</creatorcontrib><title>Imperfection sensitivity and probabilistic variation of tensile strength of steel members</title><title>International journal of solids and structures</title><description>Elastic stability theory is applied to description of tensile strength variation in steel members due to variation of initial imperfections, despite criticism on the occurrence of unloading due to plastic instability. In numerical simulation of such members, the maximum load is attained at a limit point or a hilltop bifurcation point. This load is not much different for either type of point; hence, little attention has been paid to the type of points up to now. Yet it is noteworthy that these two types of points follow different imperfection sensitivity laws within the framework of elastic stability theory. Numerical experiments on steel members undergoing plastic deformation are conducted to ensure that empirical imperfection sensitivities for these members agree well with those sensitivity laws. This assesses applicability of elastic stability theory to description of plastic instability behaviors of steel members. Moreover, empirical histograms of steel members obtained through Monte-Carlo simulations are compared with theoretical probabilities of maximum loads, which are a normal distribution for the limit point and a Weibull-like one for the hilltop point. Therefore, elastic stability theory is useful to describe tensile strength variation of steel members.</description><subject>Applied sciences</subject><subject>Buckling</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hilltop bifurcation</subject><subject>Imperfection sensitivity</subject><subject>Physics</subject><subject>Probabilistic variation</subject><subject>Solid mechanics</subject><subject>Static buckling and instability</subject><subject>Steel member</subject><subject>Structural analysis. Stresses</subject><subject>Structural and continuum mechanics</subject><subject>Tensile strength</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNkV1LHTEQhkOp0FPtTyjsTYterE42-5FciYhfIPTCFuxVmM1OamQ_TjPxgP_e3XOkXtrcDAnPvBOeEeKrhGMJsj65Ayggb2qtDkEezZdK5_cfxErqxuSFLOuPYvUP-SQ-Mz8CQKkMrMTvm2FN0ZNLYRozppFDCpuQnjMcu2wdpxbb0AdOwWUbjAG33OSztKA9ZZwijX_Sw_LGiajPBhpainwg9jz2TF9e6774dXnx8_w6v_1xdXN-dps7ZUzKNXgHspBNUddowKimMB7RdbrtKlV7iaoljd4Z1ZWIZTsfr6tyZmtXAqh98X2XO3_27xNxskNgR32PI01PbIumWNLl_4BSl1uw2oEuTsyRvF3HMGB8thLsYtxujdtFpwVpt8bt_dz37XUAssPeRxxd4LdmVSlt1JJ_uuNo1rIJFC27QKOjLsR5EbabwjuTXgDQJ5cZ</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Okazawa, Shigenobu</creator><creator>Oide, Kai</creator><creator>Ikeda, Kiyohiro</creator><creator>Terada, Kenjiro</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7TB</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20020301</creationdate><title>Imperfection sensitivity and probabilistic variation of tensile strength of steel members</title><author>Okazawa, Shigenobu ; Oide, Kai ; Ikeda, Kiyohiro ; Terada, Kenjiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-80fc01217266a9093729faacd8bd536f1a3be8afc93d4aa4bbbbf854a906c4003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Buckling</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hilltop bifurcation</topic><topic>Imperfection sensitivity</topic><topic>Physics</topic><topic>Probabilistic variation</topic><topic>Solid mechanics</topic><topic>Static buckling and instability</topic><topic>Steel member</topic><topic>Structural analysis. Stresses</topic><topic>Structural and continuum mechanics</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okazawa, Shigenobu</creatorcontrib><creatorcontrib>Oide, Kai</creatorcontrib><creatorcontrib>Ikeda, Kiyohiro</creatorcontrib><creatorcontrib>Terada, Kenjiro</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okazawa, Shigenobu</au><au>Oide, Kai</au><au>Ikeda, Kiyohiro</au><au>Terada, Kenjiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imperfection sensitivity and probabilistic variation of tensile strength of steel members</atitle><jtitle>International journal of solids and structures</jtitle><date>2002-03-01</date><risdate>2002</risdate><volume>39</volume><issue>6</issue><spage>1651</spage><epage>1671</epage><pages>1651-1671</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><coden>IJSOAD</coden><abstract>Elastic stability theory is applied to description of tensile strength variation in steel members due to variation of initial imperfections, despite criticism on the occurrence of unloading due to plastic instability. In numerical simulation of such members, the maximum load is attained at a limit point or a hilltop bifurcation point. This load is not much different for either type of point; hence, little attention has been paid to the type of points up to now. Yet it is noteworthy that these two types of points follow different imperfection sensitivity laws within the framework of elastic stability theory. Numerical experiments on steel members undergoing plastic deformation are conducted to ensure that empirical imperfection sensitivities for these members agree well with those sensitivity laws. This assesses applicability of elastic stability theory to description of plastic instability behaviors of steel members. Moreover, empirical histograms of steel members obtained through Monte-Carlo simulations are compared with theoretical probabilities of maximum loads, which are a normal distribution for the limit point and a Weibull-like one for the hilltop point. Therefore, elastic stability theory is useful to describe tensile strength variation of steel members.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7683(01)00258-X</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2002-03, Vol.39 (6), p.1651-1671 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_proquest_miscellaneous_27221721 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Buckling Buildings. Public works Computation methods. Tables. Charts Exact sciences and technology Fundamental areas of phenomenology (including applications) Hilltop bifurcation Imperfection sensitivity Physics Probabilistic variation Solid mechanics Static buckling and instability Steel member Structural analysis. Stresses Structural and continuum mechanics Tensile strength |
title | Imperfection sensitivity and probabilistic variation of tensile strength of steel members |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imperfection%20sensitivity%20and%20probabilistic%20variation%20of%20tensile%20strength%20of%20steel%20members&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Okazawa,%20Shigenobu&rft.date=2002-03-01&rft.volume=39&rft.issue=6&rft.spage=1651&rft.epage=1671&rft.pages=1651-1671&rft.issn=0020-7683&rft.eissn=1879-2146&rft.coden=IJSOAD&rft_id=info:doi/10.1016/S0020-7683(01)00258-X&rft_dat=%3Cproquest_cross%3E27218421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27218421&rft_id=info:pmid/&rft_els_id=S002076830100258X&rfr_iscdi=true |