Imperfection sensitivity and probabilistic variation of tensile strength of steel members

Elastic stability theory is applied to description of tensile strength variation in steel members due to variation of initial imperfections, despite criticism on the occurrence of unloading due to plastic instability. In numerical simulation of such members, the maximum load is attained at a limit p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2002-03, Vol.39 (6), p.1651-1671
Hauptverfasser: Okazawa, Shigenobu, Oide, Kai, Ikeda, Kiyohiro, Terada, Kenjiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1671
container_issue 6
container_start_page 1651
container_title International journal of solids and structures
container_volume 39
creator Okazawa, Shigenobu
Oide, Kai
Ikeda, Kiyohiro
Terada, Kenjiro
description Elastic stability theory is applied to description of tensile strength variation in steel members due to variation of initial imperfections, despite criticism on the occurrence of unloading due to plastic instability. In numerical simulation of such members, the maximum load is attained at a limit point or a hilltop bifurcation point. This load is not much different for either type of point; hence, little attention has been paid to the type of points up to now. Yet it is noteworthy that these two types of points follow different imperfection sensitivity laws within the framework of elastic stability theory. Numerical experiments on steel members undergoing plastic deformation are conducted to ensure that empirical imperfection sensitivities for these members agree well with those sensitivity laws. This assesses applicability of elastic stability theory to description of plastic instability behaviors of steel members. Moreover, empirical histograms of steel members obtained through Monte-Carlo simulations are compared with theoretical probabilities of maximum loads, which are a normal distribution for the limit point and a Weibull-like one for the hilltop point. Therefore, elastic stability theory is useful to describe tensile strength variation of steel members.
doi_str_mv 10.1016/S0020-7683(01)00258-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27221721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002076830100258X</els_id><sourcerecordid>27218421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-80fc01217266a9093729faacd8bd536f1a3be8afc93d4aa4bbbbf854a906c4003</originalsourceid><addsrcrecordid>eNqNkV1LHTEQhkOp0FPtTyjsTYterE42-5FciYhfIPTCFuxVmM1OamQ_TjPxgP_e3XOkXtrcDAnPvBOeEeKrhGMJsj65Ayggb2qtDkEezZdK5_cfxErqxuSFLOuPYvUP-SQ-Mz8CQKkMrMTvm2FN0ZNLYRozppFDCpuQnjMcu2wdpxbb0AdOwWUbjAG33OSztKA9ZZwijX_Sw_LGiajPBhpainwg9jz2TF9e6774dXnx8_w6v_1xdXN-dps7ZUzKNXgHspBNUddowKimMB7RdbrtKlV7iaoljd4Z1ZWIZTsfr6tyZmtXAqh98X2XO3_27xNxskNgR32PI01PbIumWNLl_4BSl1uw2oEuTsyRvF3HMGB8thLsYtxujdtFpwVpt8bt_dz37XUAssPeRxxd4LdmVSlt1JJ_uuNo1rIJFC27QKOjLsR5EbabwjuTXgDQJ5cZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27218421</pqid></control><display><type>article</type><title>Imperfection sensitivity and probabilistic variation of tensile strength of steel members</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Okazawa, Shigenobu ; Oide, Kai ; Ikeda, Kiyohiro ; Terada, Kenjiro</creator><creatorcontrib>Okazawa, Shigenobu ; Oide, Kai ; Ikeda, Kiyohiro ; Terada, Kenjiro</creatorcontrib><description>Elastic stability theory is applied to description of tensile strength variation in steel members due to variation of initial imperfections, despite criticism on the occurrence of unloading due to plastic instability. In numerical simulation of such members, the maximum load is attained at a limit point or a hilltop bifurcation point. This load is not much different for either type of point; hence, little attention has been paid to the type of points up to now. Yet it is noteworthy that these two types of points follow different imperfection sensitivity laws within the framework of elastic stability theory. Numerical experiments on steel members undergoing plastic deformation are conducted to ensure that empirical imperfection sensitivities for these members agree well with those sensitivity laws. This assesses applicability of elastic stability theory to description of plastic instability behaviors of steel members. Moreover, empirical histograms of steel members obtained through Monte-Carlo simulations are compared with theoretical probabilities of maximum loads, which are a normal distribution for the limit point and a Weibull-like one for the hilltop point. Therefore, elastic stability theory is useful to describe tensile strength variation of steel members.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/S0020-7683(01)00258-X</identifier><identifier>CODEN: IJSOAD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Buckling ; Buildings. Public works ; Computation methods. Tables. Charts ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Hilltop bifurcation ; Imperfection sensitivity ; Physics ; Probabilistic variation ; Solid mechanics ; Static buckling and instability ; Steel member ; Structural analysis. Stresses ; Structural and continuum mechanics ; Tensile strength</subject><ispartof>International journal of solids and structures, 2002-03, Vol.39 (6), p.1651-1671</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-80fc01217266a9093729faacd8bd536f1a3be8afc93d4aa4bbbbf854a906c4003</citedby><cites>FETCH-LOGICAL-c399t-80fc01217266a9093729faacd8bd536f1a3be8afc93d4aa4bbbbf854a906c4003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0020-7683(01)00258-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13538931$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Okazawa, Shigenobu</creatorcontrib><creatorcontrib>Oide, Kai</creatorcontrib><creatorcontrib>Ikeda, Kiyohiro</creatorcontrib><creatorcontrib>Terada, Kenjiro</creatorcontrib><title>Imperfection sensitivity and probabilistic variation of tensile strength of steel members</title><title>International journal of solids and structures</title><description>Elastic stability theory is applied to description of tensile strength variation in steel members due to variation of initial imperfections, despite criticism on the occurrence of unloading due to plastic instability. In numerical simulation of such members, the maximum load is attained at a limit point or a hilltop bifurcation point. This load is not much different for either type of point; hence, little attention has been paid to the type of points up to now. Yet it is noteworthy that these two types of points follow different imperfection sensitivity laws within the framework of elastic stability theory. Numerical experiments on steel members undergoing plastic deformation are conducted to ensure that empirical imperfection sensitivities for these members agree well with those sensitivity laws. This assesses applicability of elastic stability theory to description of plastic instability behaviors of steel members. Moreover, empirical histograms of steel members obtained through Monte-Carlo simulations are compared with theoretical probabilities of maximum loads, which are a normal distribution for the limit point and a Weibull-like one for the hilltop point. Therefore, elastic stability theory is useful to describe tensile strength variation of steel members.</description><subject>Applied sciences</subject><subject>Buckling</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hilltop bifurcation</subject><subject>Imperfection sensitivity</subject><subject>Physics</subject><subject>Probabilistic variation</subject><subject>Solid mechanics</subject><subject>Static buckling and instability</subject><subject>Steel member</subject><subject>Structural analysis. Stresses</subject><subject>Structural and continuum mechanics</subject><subject>Tensile strength</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNkV1LHTEQhkOp0FPtTyjsTYterE42-5FciYhfIPTCFuxVmM1OamQ_TjPxgP_e3XOkXtrcDAnPvBOeEeKrhGMJsj65Ayggb2qtDkEezZdK5_cfxErqxuSFLOuPYvUP-SQ-Mz8CQKkMrMTvm2FN0ZNLYRozppFDCpuQnjMcu2wdpxbb0AdOwWUbjAG33OSztKA9ZZwijX_Sw_LGiajPBhpainwg9jz2TF9e6774dXnx8_w6v_1xdXN-dps7ZUzKNXgHspBNUddowKimMB7RdbrtKlV7iaoljd4Z1ZWIZTsfr6tyZmtXAqh98X2XO3_27xNxskNgR32PI01PbIumWNLl_4BSl1uw2oEuTsyRvF3HMGB8thLsYtxujdtFpwVpt8bt_dz37XUAssPeRxxd4LdmVSlt1JJ_uuNo1rIJFC27QKOjLsR5EbabwjuTXgDQJ5cZ</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Okazawa, Shigenobu</creator><creator>Oide, Kai</creator><creator>Ikeda, Kiyohiro</creator><creator>Terada, Kenjiro</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7TB</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20020301</creationdate><title>Imperfection sensitivity and probabilistic variation of tensile strength of steel members</title><author>Okazawa, Shigenobu ; Oide, Kai ; Ikeda, Kiyohiro ; Terada, Kenjiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-80fc01217266a9093729faacd8bd536f1a3be8afc93d4aa4bbbbf854a906c4003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Buckling</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hilltop bifurcation</topic><topic>Imperfection sensitivity</topic><topic>Physics</topic><topic>Probabilistic variation</topic><topic>Solid mechanics</topic><topic>Static buckling and instability</topic><topic>Steel member</topic><topic>Structural analysis. Stresses</topic><topic>Structural and continuum mechanics</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okazawa, Shigenobu</creatorcontrib><creatorcontrib>Oide, Kai</creatorcontrib><creatorcontrib>Ikeda, Kiyohiro</creatorcontrib><creatorcontrib>Terada, Kenjiro</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okazawa, Shigenobu</au><au>Oide, Kai</au><au>Ikeda, Kiyohiro</au><au>Terada, Kenjiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imperfection sensitivity and probabilistic variation of tensile strength of steel members</atitle><jtitle>International journal of solids and structures</jtitle><date>2002-03-01</date><risdate>2002</risdate><volume>39</volume><issue>6</issue><spage>1651</spage><epage>1671</epage><pages>1651-1671</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><coden>IJSOAD</coden><abstract>Elastic stability theory is applied to description of tensile strength variation in steel members due to variation of initial imperfections, despite criticism on the occurrence of unloading due to plastic instability. In numerical simulation of such members, the maximum load is attained at a limit point or a hilltop bifurcation point. This load is not much different for either type of point; hence, little attention has been paid to the type of points up to now. Yet it is noteworthy that these two types of points follow different imperfection sensitivity laws within the framework of elastic stability theory. Numerical experiments on steel members undergoing plastic deformation are conducted to ensure that empirical imperfection sensitivities for these members agree well with those sensitivity laws. This assesses applicability of elastic stability theory to description of plastic instability behaviors of steel members. Moreover, empirical histograms of steel members obtained through Monte-Carlo simulations are compared with theoretical probabilities of maximum loads, which are a normal distribution for the limit point and a Weibull-like one for the hilltop point. Therefore, elastic stability theory is useful to describe tensile strength variation of steel members.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7683(01)00258-X</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2002-03, Vol.39 (6), p.1651-1671
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_miscellaneous_27221721
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Buckling
Buildings. Public works
Computation methods. Tables. Charts
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Hilltop bifurcation
Imperfection sensitivity
Physics
Probabilistic variation
Solid mechanics
Static buckling and instability
Steel member
Structural analysis. Stresses
Structural and continuum mechanics
Tensile strength
title Imperfection sensitivity and probabilistic variation of tensile strength of steel members
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imperfection%20sensitivity%20and%20probabilistic%20variation%20of%20tensile%20strength%20of%20steel%20members&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Okazawa,%20Shigenobu&rft.date=2002-03-01&rft.volume=39&rft.issue=6&rft.spage=1651&rft.epage=1671&rft.pages=1651-1671&rft.issn=0020-7683&rft.eissn=1879-2146&rft.coden=IJSOAD&rft_id=info:doi/10.1016/S0020-7683(01)00258-X&rft_dat=%3Cproquest_cross%3E27218421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27218421&rft_id=info:pmid/&rft_els_id=S002076830100258X&rfr_iscdi=true