Importance sampling for error event analysis of HMM frequency line trackers

This paper considers the problem of designing efficient and systematic importance sampling (IS) schemes for the performance study of hidden Markov model (HMM) based trackers. Importance sampling (IS) is a powerful Monte Carlo (MC) variance reduction technique, which can require orders of magnitude f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2002-02, Vol.50 (2), p.411-424
Hauptverfasser: Arulampalam, M.S., Evans, R.J., Letaief, K.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 424
container_issue 2
container_start_page 411
container_title IEEE transactions on signal processing
container_volume 50
creator Arulampalam, M.S.
Evans, R.J.
Letaief, K.B.
description This paper considers the problem of designing efficient and systematic importance sampling (IS) schemes for the performance study of hidden Markov model (HMM) based trackers. Importance sampling (IS) is a powerful Monte Carlo (MC) variance reduction technique, which can require orders of magnitude fewer simulation trials than ordinary MC to obtain the same specified precision. We present an IS technique applicable to error event analysis of HMM based trackers. Specifically, we use conditional IS to extend our work in another of our paper to estimate average error event probabilities. In addition, we derive upper bounds on these error probabilities, which are then used to verify the simulations. The power and accuracy of the proposed method is illustrated by application to an HMM frequency tracker.
doi_str_mv 10.1109/78.978395
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27219928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>978395</ieee_id><sourcerecordid>28410602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d0d29cf23a3e54ea7bca7663a3cc362a951d3af0d206829ed5ffe4d4ee43ae383</originalsourceid><addsrcrecordid>eNqF0TtPwzAQAOAIgUQpDKxMFgOIIeBX_BhRBbSiFQtIbJFxziglL-wUqf8eR6kYGGA53-k--SxfkpwSfE0I1jdSXWupmM72kgnRnKSYS7Efc5yxNFPy9TA5CmGNMeFci0nyuKi71vemsYCCqbuqbN6Raz0C74f4BU2PTGOqbSgDah2ar1bIefjcQGO3KHJAvTf2A3w4Tg6cqQKc7M5p8nJ_9zybp8unh8XsdplaRmWfFrig2jrKDIOMg5Fv1kghYmktE9TojBTMuKiwUFRDkTkHvOAAnBlgik2Ty_HezrfxHaHP6zJYqCrTQLsJucZSi4xJHeXFn5IqTrDA9H8oKdGaDrPPf8F1u_Hxf0KuFGcaUzGgqxFZ34bgweWdL2vjtznB-bCmXKp8XFO0Z6MtAeDH7ZrftsiMtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884390268</pqid></control><display><type>article</type><title>Importance sampling for error event analysis of HMM frequency line trackers</title><source>IEEE Electronic Library (IEL)</source><creator>Arulampalam, M.S. ; Evans, R.J. ; Letaief, K.B.</creator><creatorcontrib>Arulampalam, M.S. ; Evans, R.J. ; Letaief, K.B.</creatorcontrib><description>This paper considers the problem of designing efficient and systematic importance sampling (IS) schemes for the performance study of hidden Markov model (HMM) based trackers. Importance sampling (IS) is a powerful Monte Carlo (MC) variance reduction technique, which can require orders of magnitude fewer simulation trials than ordinary MC to obtain the same specified precision. We present an IS technique applicable to error event analysis of HMM based trackers. Specifically, we use conditional IS to extend our work in another of our paper to estimate average error event probabilities. In addition, we derive upper bounds on these error probabilities, which are then used to verify the simulations. The power and accuracy of the proposed method is illustrated by application to an HMM frequency tracker.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.978395</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Computational modeling ; Computer simulation ; Discrete event simulation ; Error analysis ; Error probability ; Errors ; Estimates ; Frequency ; Hidden Markov models ; Importance sampling ; Mathematical models ; Monte Carlo methods ; Performance analysis ; Signal processing algorithms ; Upper bounds</subject><ispartof>IEEE transactions on signal processing, 2002-02, Vol.50 (2), p.411-424</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-d0d29cf23a3e54ea7bca7663a3cc362a951d3af0d206829ed5ffe4d4ee43ae383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/978395$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/978395$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Arulampalam, M.S.</creatorcontrib><creatorcontrib>Evans, R.J.</creatorcontrib><creatorcontrib>Letaief, K.B.</creatorcontrib><title>Importance sampling for error event analysis of HMM frequency line trackers</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper considers the problem of designing efficient and systematic importance sampling (IS) schemes for the performance study of hidden Markov model (HMM) based trackers. Importance sampling (IS) is a powerful Monte Carlo (MC) variance reduction technique, which can require orders of magnitude fewer simulation trials than ordinary MC to obtain the same specified precision. We present an IS technique applicable to error event analysis of HMM based trackers. Specifically, we use conditional IS to extend our work in another of our paper to estimate average error event probabilities. In addition, we derive upper bounds on these error probabilities, which are then used to verify the simulations. The power and accuracy of the proposed method is illustrated by application to an HMM frequency tracker.</description><subject>Algorithm design and analysis</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Discrete event simulation</subject><subject>Error analysis</subject><subject>Error probability</subject><subject>Errors</subject><subject>Estimates</subject><subject>Frequency</subject><subject>Hidden Markov models</subject><subject>Importance sampling</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Performance analysis</subject><subject>Signal processing algorithms</subject><subject>Upper bounds</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0TtPwzAQAOAIgUQpDKxMFgOIIeBX_BhRBbSiFQtIbJFxziglL-wUqf8eR6kYGGA53-k--SxfkpwSfE0I1jdSXWupmM72kgnRnKSYS7Efc5yxNFPy9TA5CmGNMeFci0nyuKi71vemsYCCqbuqbN6Raz0C74f4BU2PTGOqbSgDah2ar1bIefjcQGO3KHJAvTf2A3w4Tg6cqQKc7M5p8nJ_9zybp8unh8XsdplaRmWfFrig2jrKDIOMg5Fv1kghYmktE9TojBTMuKiwUFRDkTkHvOAAnBlgik2Ty_HezrfxHaHP6zJYqCrTQLsJucZSi4xJHeXFn5IqTrDA9H8oKdGaDrPPf8F1u_Hxf0KuFGcaUzGgqxFZ34bgweWdL2vjtznB-bCmXKp8XFO0Z6MtAeDH7ZrftsiMtw</recordid><startdate>20020201</startdate><enddate>20020201</enddate><creator>Arulampalam, M.S.</creator><creator>Evans, R.J.</creator><creator>Letaief, K.B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020201</creationdate><title>Importance sampling for error event analysis of HMM frequency line trackers</title><author>Arulampalam, M.S. ; Evans, R.J. ; Letaief, K.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d0d29cf23a3e54ea7bca7663a3cc362a951d3af0d206829ed5ffe4d4ee43ae383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithm design and analysis</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Discrete event simulation</topic><topic>Error analysis</topic><topic>Error probability</topic><topic>Errors</topic><topic>Estimates</topic><topic>Frequency</topic><topic>Hidden Markov models</topic><topic>Importance sampling</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Performance analysis</topic><topic>Signal processing algorithms</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arulampalam, M.S.</creatorcontrib><creatorcontrib>Evans, R.J.</creatorcontrib><creatorcontrib>Letaief, K.B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arulampalam, M.S.</au><au>Evans, R.J.</au><au>Letaief, K.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Importance sampling for error event analysis of HMM frequency line trackers</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2002-02-01</date><risdate>2002</risdate><volume>50</volume><issue>2</issue><spage>411</spage><epage>424</epage><pages>411-424</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper considers the problem of designing efficient and systematic importance sampling (IS) schemes for the performance study of hidden Markov model (HMM) based trackers. Importance sampling (IS) is a powerful Monte Carlo (MC) variance reduction technique, which can require orders of magnitude fewer simulation trials than ordinary MC to obtain the same specified precision. We present an IS technique applicable to error event analysis of HMM based trackers. Specifically, we use conditional IS to extend our work in another of our paper to estimate average error event probabilities. In addition, we derive upper bounds on these error probabilities, which are then used to verify the simulations. The power and accuracy of the proposed method is illustrated by application to an HMM frequency tracker.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/78.978395</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2002-02, Vol.50 (2), p.411-424
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_27219928
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Computational modeling
Computer simulation
Discrete event simulation
Error analysis
Error probability
Errors
Estimates
Frequency
Hidden Markov models
Importance sampling
Mathematical models
Monte Carlo methods
Performance analysis
Signal processing algorithms
Upper bounds
title Importance sampling for error event analysis of HMM frequency line trackers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Importance%20sampling%20for%20error%20event%20analysis%20of%20HMM%20frequency%20line%20trackers&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Arulampalam,%20M.S.&rft.date=2002-02-01&rft.volume=50&rft.issue=2&rft.spage=411&rft.epage=424&rft.pages=411-424&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.978395&rft_dat=%3Cproquest_RIE%3E28410602%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884390268&rft_id=info:pmid/&rft_ieee_id=978395&rfr_iscdi=true