Microstructural evolution during directional annealing
Development of a columnar-grained structure and its continued propagation during directional annealing has been studied using a front-tracking, grain-growth model. The effects of the initial microstructure, hot zone velocity, and hot zone width were investigated for a single-phase system without a t...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2002-08, Vol.50 (13), p.3347-3359 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3359 |
---|---|
container_issue | 13 |
container_start_page | 3347 |
container_title | Acta materialia |
container_volume | 50 |
creator | Badmos, A.Y Frost, H.J Baker, I |
description | Development of a columnar-grained structure and its continued propagation during directional annealing has been studied using a front-tracking, grain-growth model. The effects of the initial microstructure, hot zone velocity, and hot zone width were investigated for a single-phase system without a texture. Decreasing zone velocity and increasing zone width increase the ease of forming and propagating a columnar-grained structure. For a given zone width, grain length decreases with increasing velocity and the grain structure becomes equi-axed at high velocities. For a given zone velocity, critical zone width for propagation of a columnar grain is lower than that for its development. Critical zone velocity for propagation is independent of zone width for widths greater than about twice the initial grain size, while it increases with the width for lower zone widths. For a given initial grain size, the critical velocity for propagation increases with increasing width of the initial columnar grain. |
doi_str_mv | 10.1016/S1359-6454(02)00138-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27218360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645402001386</els_id><sourcerecordid>27218360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-1b40f6250b0a0b5ddfd9db2d969b605d0cbfb73ec61821aefffd173a80d1b9953</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoWKs_QehF0cPqJNlksyeR4gsqHtRzyFMi292a7Bb892bbikdPM8x8M8N8CJ1iuMKA-fUrpqwueMnKCyCXAJiKgu-hCRYVLUjJ6H7Of5FDdJTSZ4ZIVcIE8edgYpf6OJh-iKqZuXXXDH3o2pkdYmg_ZjZEZ8ZCbqq2darJ1WN04FWT3MkuTtH7_d3b_LFYvDw8zW8XhaFc9AXWJXhOGGhQoJm13tZWE1vzWnNgFoz2uqLOcCwIVs57b3FFlQCLdV0zOkXn272r2H0NLvVyGZJxTaNa1w1JkopgQTlkkG3B8ZsUnZerGJYqfksMcrQkN5bkqEACkRtLkue5s90BlYxqfFStCelvmApSikpk7mbLufztOrgokwmuNW6rR9ou_HPpBx0vfN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27218360</pqid></control><display><type>article</type><title>Microstructural evolution during directional annealing</title><source>Access via ScienceDirect (Elsevier)</source><creator>Badmos, A.Y ; Frost, H.J ; Baker, I</creator><creatorcontrib>Badmos, A.Y ; Frost, H.J ; Baker, I</creatorcontrib><description>Development of a columnar-grained structure and its continued propagation during directional annealing has been studied using a front-tracking, grain-growth model. The effects of the initial microstructure, hot zone velocity, and hot zone width were investigated for a single-phase system without a texture. Decreasing zone velocity and increasing zone width increase the ease of forming and propagating a columnar-grained structure. For a given zone width, grain length decreases with increasing velocity and the grain structure becomes equi-axed at high velocities. For a given zone velocity, critical zone width for propagation of a columnar grain is lower than that for its development. Critical zone velocity for propagation is independent of zone width for widths greater than about twice the initial grain size, while it increases with the width for lower zone widths. For a given initial grain size, the critical velocity for propagation increases with increasing width of the initial columnar grain.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/S1359-6454(02)00138-6</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Computer simulation ; Cross-disciplinary physics: materials science; rheology ; Directional annealing ; Exact sciences and technology ; Front-tracking ; Grain-growth ; Materials science ; Metals. Metallurgy ; Physics ; Solid solution hardening, precipitation hardening, and dispersion hardening; aging ; Solid solution, precipitation, and dispersion hardening; aging ; Treatment of materials and its effects on microstructure and properties</subject><ispartof>Acta materialia, 2002-08, Vol.50 (13), p.3347-3359</ispartof><rights>2002 Acta Materialia Inc</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-1b40f6250b0a0b5ddfd9db2d969b605d0cbfb73ec61821aefffd173a80d1b9953</citedby><cites>FETCH-LOGICAL-c368t-1b40f6250b0a0b5ddfd9db2d969b605d0cbfb73ec61821aefffd173a80d1b9953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1359-6454(02)00138-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13824878$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Badmos, A.Y</creatorcontrib><creatorcontrib>Frost, H.J</creatorcontrib><creatorcontrib>Baker, I</creatorcontrib><title>Microstructural evolution during directional annealing</title><title>Acta materialia</title><description>Development of a columnar-grained structure and its continued propagation during directional annealing has been studied using a front-tracking, grain-growth model. The effects of the initial microstructure, hot zone velocity, and hot zone width were investigated for a single-phase system without a texture. Decreasing zone velocity and increasing zone width increase the ease of forming and propagating a columnar-grained structure. For a given zone width, grain length decreases with increasing velocity and the grain structure becomes equi-axed at high velocities. For a given zone velocity, critical zone width for propagation of a columnar grain is lower than that for its development. Critical zone velocity for propagation is independent of zone width for widths greater than about twice the initial grain size, while it increases with the width for lower zone widths. For a given initial grain size, the critical velocity for propagation increases with increasing width of the initial columnar grain.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Directional annealing</subject><subject>Exact sciences and technology</subject><subject>Front-tracking</subject><subject>Grain-growth</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Solid solution hardening, precipitation hardening, and dispersion hardening; aging</subject><subject>Solid solution, precipitation, and dispersion hardening; aging</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQgIMoWKs_QehF0cPqJNlksyeR4gsqHtRzyFMi292a7Bb892bbikdPM8x8M8N8CJ1iuMKA-fUrpqwueMnKCyCXAJiKgu-hCRYVLUjJ6H7Of5FDdJTSZ4ZIVcIE8edgYpf6OJh-iKqZuXXXDH3o2pkdYmg_ZjZEZ8ZCbqq2darJ1WN04FWT3MkuTtH7_d3b_LFYvDw8zW8XhaFc9AXWJXhOGGhQoJm13tZWE1vzWnNgFoz2uqLOcCwIVs57b3FFlQCLdV0zOkXn272r2H0NLvVyGZJxTaNa1w1JkopgQTlkkG3B8ZsUnZerGJYqfksMcrQkN5bkqEACkRtLkue5s90BlYxqfFStCelvmApSikpk7mbLufztOrgokwmuNW6rR9ou_HPpBx0vfN8</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Badmos, A.Y</creator><creator>Frost, H.J</creator><creator>Baker, I</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20020801</creationdate><title>Microstructural evolution during directional annealing</title><author>Badmos, A.Y ; Frost, H.J ; Baker, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-1b40f6250b0a0b5ddfd9db2d969b605d0cbfb73ec61821aefffd173a80d1b9953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Directional annealing</topic><topic>Exact sciences and technology</topic><topic>Front-tracking</topic><topic>Grain-growth</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Solid solution hardening, precipitation hardening, and dispersion hardening; aging</topic><topic>Solid solution, precipitation, and dispersion hardening; aging</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badmos, A.Y</creatorcontrib><creatorcontrib>Frost, H.J</creatorcontrib><creatorcontrib>Baker, I</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badmos, A.Y</au><au>Frost, H.J</au><au>Baker, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural evolution during directional annealing</atitle><jtitle>Acta materialia</jtitle><date>2002-08-01</date><risdate>2002</risdate><volume>50</volume><issue>13</issue><spage>3347</spage><epage>3359</epage><pages>3347-3359</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Development of a columnar-grained structure and its continued propagation during directional annealing has been studied using a front-tracking, grain-growth model. The effects of the initial microstructure, hot zone velocity, and hot zone width were investigated for a single-phase system without a texture. Decreasing zone velocity and increasing zone width increase the ease of forming and propagating a columnar-grained structure. For a given zone width, grain length decreases with increasing velocity and the grain structure becomes equi-axed at high velocities. For a given zone velocity, critical zone width for propagation of a columnar grain is lower than that for its development. Critical zone velocity for propagation is independent of zone width for widths greater than about twice the initial grain size, while it increases with the width for lower zone widths. For a given initial grain size, the critical velocity for propagation increases with increasing width of the initial columnar grain.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1359-6454(02)00138-6</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2002-08, Vol.50 (13), p.3347-3359 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_27218360 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Computer simulation Cross-disciplinary physics: materials science rheology Directional annealing Exact sciences and technology Front-tracking Grain-growth Materials science Metals. Metallurgy Physics Solid solution hardening, precipitation hardening, and dispersion hardening aging Solid solution, precipitation, and dispersion hardening aging Treatment of materials and its effects on microstructure and properties |
title | Microstructural evolution during directional annealing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T14%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20evolution%20during%20directional%20annealing&rft.jtitle=Acta%20materialia&rft.au=Badmos,%20A.Y&rft.date=2002-08-01&rft.volume=50&rft.issue=13&rft.spage=3347&rft.epage=3359&rft.pages=3347-3359&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/S1359-6454(02)00138-6&rft_dat=%3Cproquest_cross%3E27218360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27218360&rft_id=info:pmid/&rft_els_id=S1359645402001386&rfr_iscdi=true |