Microstructural evolution during directional annealing

Development of a columnar-grained structure and its continued propagation during directional annealing has been studied using a front-tracking, grain-growth model. The effects of the initial microstructure, hot zone velocity, and hot zone width were investigated for a single-phase system without a t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2002-08, Vol.50 (13), p.3347-3359
Hauptverfasser: Badmos, A.Y, Frost, H.J, Baker, I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3359
container_issue 13
container_start_page 3347
container_title Acta materialia
container_volume 50
creator Badmos, A.Y
Frost, H.J
Baker, I
description Development of a columnar-grained structure and its continued propagation during directional annealing has been studied using a front-tracking, grain-growth model. The effects of the initial microstructure, hot zone velocity, and hot zone width were investigated for a single-phase system without a texture. Decreasing zone velocity and increasing zone width increase the ease of forming and propagating a columnar-grained structure. For a given zone width, grain length decreases with increasing velocity and the grain structure becomes equi-axed at high velocities. For a given zone velocity, critical zone width for propagation of a columnar grain is lower than that for its development. Critical zone velocity for propagation is independent of zone width for widths greater than about twice the initial grain size, while it increases with the width for lower zone widths. For a given initial grain size, the critical velocity for propagation increases with increasing width of the initial columnar grain.
doi_str_mv 10.1016/S1359-6454(02)00138-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27218360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645402001386</els_id><sourcerecordid>27218360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-1b40f6250b0a0b5ddfd9db2d969b605d0cbfb73ec61821aefffd173a80d1b9953</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoWKs_QehF0cPqJNlksyeR4gsqHtRzyFMi292a7Bb892bbikdPM8x8M8N8CJ1iuMKA-fUrpqwueMnKCyCXAJiKgu-hCRYVLUjJ6H7Of5FDdJTSZ4ZIVcIE8edgYpf6OJh-iKqZuXXXDH3o2pkdYmg_ZjZEZ8ZCbqq2darJ1WN04FWT3MkuTtH7_d3b_LFYvDw8zW8XhaFc9AXWJXhOGGhQoJm13tZWE1vzWnNgFoz2uqLOcCwIVs57b3FFlQCLdV0zOkXn272r2H0NLvVyGZJxTaNa1w1JkopgQTlkkG3B8ZsUnZerGJYqfksMcrQkN5bkqEACkRtLkue5s90BlYxqfFStCelvmApSikpk7mbLufztOrgokwmuNW6rR9ou_HPpBx0vfN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27218360</pqid></control><display><type>article</type><title>Microstructural evolution during directional annealing</title><source>Access via ScienceDirect (Elsevier)</source><creator>Badmos, A.Y ; Frost, H.J ; Baker, I</creator><creatorcontrib>Badmos, A.Y ; Frost, H.J ; Baker, I</creatorcontrib><description>Development of a columnar-grained structure and its continued propagation during directional annealing has been studied using a front-tracking, grain-growth model. The effects of the initial microstructure, hot zone velocity, and hot zone width were investigated for a single-phase system without a texture. Decreasing zone velocity and increasing zone width increase the ease of forming and propagating a columnar-grained structure. For a given zone width, grain length decreases with increasing velocity and the grain structure becomes equi-axed at high velocities. For a given zone velocity, critical zone width for propagation of a columnar grain is lower than that for its development. Critical zone velocity for propagation is independent of zone width for widths greater than about twice the initial grain size, while it increases with the width for lower zone widths. For a given initial grain size, the critical velocity for propagation increases with increasing width of the initial columnar grain.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/S1359-6454(02)00138-6</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Computer simulation ; Cross-disciplinary physics: materials science; rheology ; Directional annealing ; Exact sciences and technology ; Front-tracking ; Grain-growth ; Materials science ; Metals. Metallurgy ; Physics ; Solid solution hardening, precipitation hardening, and dispersion hardening; aging ; Solid solution, precipitation, and dispersion hardening; aging ; Treatment of materials and its effects on microstructure and properties</subject><ispartof>Acta materialia, 2002-08, Vol.50 (13), p.3347-3359</ispartof><rights>2002 Acta Materialia Inc</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-1b40f6250b0a0b5ddfd9db2d969b605d0cbfb73ec61821aefffd173a80d1b9953</citedby><cites>FETCH-LOGICAL-c368t-1b40f6250b0a0b5ddfd9db2d969b605d0cbfb73ec61821aefffd173a80d1b9953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1359-6454(02)00138-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13824878$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Badmos, A.Y</creatorcontrib><creatorcontrib>Frost, H.J</creatorcontrib><creatorcontrib>Baker, I</creatorcontrib><title>Microstructural evolution during directional annealing</title><title>Acta materialia</title><description>Development of a columnar-grained structure and its continued propagation during directional annealing has been studied using a front-tracking, grain-growth model. The effects of the initial microstructure, hot zone velocity, and hot zone width were investigated for a single-phase system without a texture. Decreasing zone velocity and increasing zone width increase the ease of forming and propagating a columnar-grained structure. For a given zone width, grain length decreases with increasing velocity and the grain structure becomes equi-axed at high velocities. For a given zone velocity, critical zone width for propagation of a columnar grain is lower than that for its development. Critical zone velocity for propagation is independent of zone width for widths greater than about twice the initial grain size, while it increases with the width for lower zone widths. For a given initial grain size, the critical velocity for propagation increases with increasing width of the initial columnar grain.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Directional annealing</subject><subject>Exact sciences and technology</subject><subject>Front-tracking</subject><subject>Grain-growth</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Physics</subject><subject>Solid solution hardening, precipitation hardening, and dispersion hardening; aging</subject><subject>Solid solution, precipitation, and dispersion hardening; aging</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQgIMoWKs_QehF0cPqJNlksyeR4gsqHtRzyFMi292a7Bb892bbikdPM8x8M8N8CJ1iuMKA-fUrpqwueMnKCyCXAJiKgu-hCRYVLUjJ6H7Of5FDdJTSZ4ZIVcIE8edgYpf6OJh-iKqZuXXXDH3o2pkdYmg_ZjZEZ8ZCbqq2darJ1WN04FWT3MkuTtH7_d3b_LFYvDw8zW8XhaFc9AXWJXhOGGhQoJm13tZWE1vzWnNgFoz2uqLOcCwIVs57b3FFlQCLdV0zOkXn272r2H0NLvVyGZJxTaNa1w1JkopgQTlkkG3B8ZsUnZerGJYqfksMcrQkN5bkqEACkRtLkue5s90BlYxqfFStCelvmApSikpk7mbLufztOrgokwmuNW6rR9ou_HPpBx0vfN8</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Badmos, A.Y</creator><creator>Frost, H.J</creator><creator>Baker, I</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20020801</creationdate><title>Microstructural evolution during directional annealing</title><author>Badmos, A.Y ; Frost, H.J ; Baker, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-1b40f6250b0a0b5ddfd9db2d969b605d0cbfb73ec61821aefffd173a80d1b9953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Directional annealing</topic><topic>Exact sciences and technology</topic><topic>Front-tracking</topic><topic>Grain-growth</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Physics</topic><topic>Solid solution hardening, precipitation hardening, and dispersion hardening; aging</topic><topic>Solid solution, precipitation, and dispersion hardening; aging</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badmos, A.Y</creatorcontrib><creatorcontrib>Frost, H.J</creatorcontrib><creatorcontrib>Baker, I</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badmos, A.Y</au><au>Frost, H.J</au><au>Baker, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural evolution during directional annealing</atitle><jtitle>Acta materialia</jtitle><date>2002-08-01</date><risdate>2002</risdate><volume>50</volume><issue>13</issue><spage>3347</spage><epage>3359</epage><pages>3347-3359</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Development of a columnar-grained structure and its continued propagation during directional annealing has been studied using a front-tracking, grain-growth model. The effects of the initial microstructure, hot zone velocity, and hot zone width were investigated for a single-phase system without a texture. Decreasing zone velocity and increasing zone width increase the ease of forming and propagating a columnar-grained structure. For a given zone width, grain length decreases with increasing velocity and the grain structure becomes equi-axed at high velocities. For a given zone velocity, critical zone width for propagation of a columnar grain is lower than that for its development. Critical zone velocity for propagation is independent of zone width for widths greater than about twice the initial grain size, while it increases with the width for lower zone widths. For a given initial grain size, the critical velocity for propagation increases with increasing width of the initial columnar grain.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1359-6454(02)00138-6</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2002-08, Vol.50 (13), p.3347-3359
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_27218360
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Computer simulation
Cross-disciplinary physics: materials science
rheology
Directional annealing
Exact sciences and technology
Front-tracking
Grain-growth
Materials science
Metals. Metallurgy
Physics
Solid solution hardening, precipitation hardening, and dispersion hardening
aging
Solid solution, precipitation, and dispersion hardening
aging
Treatment of materials and its effects on microstructure and properties
title Microstructural evolution during directional annealing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T14%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20evolution%20during%20directional%20annealing&rft.jtitle=Acta%20materialia&rft.au=Badmos,%20A.Y&rft.date=2002-08-01&rft.volume=50&rft.issue=13&rft.spage=3347&rft.epage=3359&rft.pages=3347-3359&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/S1359-6454(02)00138-6&rft_dat=%3Cproquest_cross%3E27218360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27218360&rft_id=info:pmid/&rft_els_id=S1359645402001386&rfr_iscdi=true