Characterizing aluminum sintering using in-situ NDE

Considerable attention has been given to the use of nondestructive evaluation techniques to reduce the costs associated with the manufacture of powder-metallurgy components. One such technology that is being developed at the US Department of Energy's Ames Laboratory is an in situ noncontact tec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOM (1989) 2000-05, Vol.52 (5), p.38-39
Hauptverfasser: Foley, James C., Rehbein, David K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 5
container_start_page 38
container_title JOM (1989)
container_volume 52
creator Foley, James C.
Rehbein, David K.
description Considerable attention has been given to the use of nondestructive evaluation techniques to reduce the costs associated with the manufacture of powder-metallurgy components. One such technology that is being developed at the US Department of Energy's Ames Laboratory is an in situ noncontact technique to characterize sintering. The method consists of a high-temperature electromagnetic acoustic transducer to measure the amplitude and velocity of an ultrasonic tone burst travelling through a sample during sintering. Results from the in situ noncontact nondestructive evaluation measurements indicate that real-time in situ monitoring of sintering is attainable.
doi_str_mv 10.1007/s11837-000-0032-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27218092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>53917453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-777cddf801c4e3aba067d7391828d85ead62c356d7a4d95cad2b1ea5366250313</originalsourceid><addsrcrecordid>eNpdkLtOAzEQRS0EEiHwAXQRBZ3B47HX3hKF8JAiaKC2HNsBR_sI9m4BX49XoaKYh66ORqNDyCWwG2BM3WYAjYoyxkohp3BEZiAFUtASjsvOhKJCoz4lZznvCqdEDTOCy0-brBtCij-x-1jYZmxjN7aLHLspLNGYpx47muMwLl7uV-fkZGubHC7-5py8P6zelk90_fr4vLxbU4cMBqqUct5vNQMnAtqNZZXyCmvQXHstg_UVdygrr6zwtXTW8w0EK7GquGQIOCfXh7v71H-NIQ-mjdmFprFd6MdsuOKgWc0LePUP3PVj6spvhiOXUgiJBYID5FKfcwpbs0-xtenbADOTQ3NwaIobMzk0gL-jt2LB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232554453</pqid></control><display><type>article</type><title>Characterizing aluminum sintering using in-situ NDE</title><source>SpringerNature Journals</source><creator>Foley, James C. ; Rehbein, David K.</creator><creatorcontrib>Foley, James C. ; Rehbein, David K.</creatorcontrib><description>Considerable attention has been given to the use of nondestructive evaluation techniques to reduce the costs associated with the manufacture of powder-metallurgy components. One such technology that is being developed at the US Department of Energy's Ames Laboratory is an in situ noncontact technique to characterize sintering. The method consists of a high-temperature electromagnetic acoustic transducer to measure the amplitude and velocity of an ultrasonic tone burst travelling through a sample during sintering. Results from the in situ noncontact nondestructive evaluation measurements indicate that real-time in situ monitoring of sintering is attainable.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-000-0032-1</identifier><identifier>CODEN: JOMMER</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Acoustics ; Aluminum ; Laboratories ; Metallurgy ; Nondestructive testing ; Process controls ; Production capacity ; Sintering</subject><ispartof>JOM (1989), 2000-05, Vol.52 (5), p.38-39</ispartof><rights>Copyright Minerals, Metals &amp; Materials Society May 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-777cddf801c4e3aba067d7391828d85ead62c356d7a4d95cad2b1ea5366250313</citedby><cites>FETCH-LOGICAL-c301t-777cddf801c4e3aba067d7391828d85ead62c356d7a4d95cad2b1ea5366250313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Foley, James C.</creatorcontrib><creatorcontrib>Rehbein, David K.</creatorcontrib><title>Characterizing aluminum sintering using in-situ NDE</title><title>JOM (1989)</title><description>Considerable attention has been given to the use of nondestructive evaluation techniques to reduce the costs associated with the manufacture of powder-metallurgy components. One such technology that is being developed at the US Department of Energy's Ames Laboratory is an in situ noncontact technique to characterize sintering. The method consists of a high-temperature electromagnetic acoustic transducer to measure the amplitude and velocity of an ultrasonic tone burst travelling through a sample during sintering. Results from the in situ noncontact nondestructive evaluation measurements indicate that real-time in situ monitoring of sintering is attainable.</description><subject>Acoustics</subject><subject>Aluminum</subject><subject>Laboratories</subject><subject>Metallurgy</subject><subject>Nondestructive testing</subject><subject>Process controls</subject><subject>Production capacity</subject><subject>Sintering</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkLtOAzEQRS0EEiHwAXQRBZ3B47HX3hKF8JAiaKC2HNsBR_sI9m4BX49XoaKYh66ORqNDyCWwG2BM3WYAjYoyxkohp3BEZiAFUtASjsvOhKJCoz4lZznvCqdEDTOCy0-brBtCij-x-1jYZmxjN7aLHLspLNGYpx47muMwLl7uV-fkZGubHC7-5py8P6zelk90_fr4vLxbU4cMBqqUct5vNQMnAtqNZZXyCmvQXHstg_UVdygrr6zwtXTW8w0EK7GquGQIOCfXh7v71H-NIQ-mjdmFprFd6MdsuOKgWc0LePUP3PVj6spvhiOXUgiJBYID5FKfcwpbs0-xtenbADOTQ3NwaIobMzk0gL-jt2LB</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Foley, James C.</creator><creator>Rehbein, David K.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QF</scope></search><sort><creationdate>20000501</creationdate><title>Characterizing aluminum sintering using in-situ NDE</title><author>Foley, James C. ; Rehbein, David K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-777cddf801c4e3aba067d7391828d85ead62c356d7a4d95cad2b1ea5366250313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Acoustics</topic><topic>Aluminum</topic><topic>Laboratories</topic><topic>Metallurgy</topic><topic>Nondestructive testing</topic><topic>Process controls</topic><topic>Production capacity</topic><topic>Sintering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foley, James C.</creatorcontrib><creatorcontrib>Rehbein, David K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aluminium Industry Abstracts</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foley, James C.</au><au>Rehbein, David K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing aluminum sintering using in-situ NDE</atitle><jtitle>JOM (1989)</jtitle><date>2000-05-01</date><risdate>2000</risdate><volume>52</volume><issue>5</issue><spage>38</spage><epage>39</epage><pages>38-39</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><coden>JOMMER</coden><abstract>Considerable attention has been given to the use of nondestructive evaluation techniques to reduce the costs associated with the manufacture of powder-metallurgy components. One such technology that is being developed at the US Department of Energy's Ames Laboratory is an in situ noncontact technique to characterize sintering. The method consists of a high-temperature electromagnetic acoustic transducer to measure the amplitude and velocity of an ultrasonic tone burst travelling through a sample during sintering. Results from the in situ noncontact nondestructive evaluation measurements indicate that real-time in situ monitoring of sintering is attainable.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11837-000-0032-1</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-4838
ispartof JOM (1989), 2000-05, Vol.52 (5), p.38-39
issn 1047-4838
1543-1851
language eng
recordid cdi_proquest_miscellaneous_27218092
source SpringerNature Journals
subjects Acoustics
Aluminum
Laboratories
Metallurgy
Nondestructive testing
Process controls
Production capacity
Sintering
title Characterizing aluminum sintering using in-situ NDE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20aluminum%20sintering%20using%20in-situ%20NDE&rft.jtitle=JOM%20(1989)&rft.au=Foley,%20James%20C.&rft.date=2000-05-01&rft.volume=52&rft.issue=5&rft.spage=38&rft.epage=39&rft.pages=38-39&rft.issn=1047-4838&rft.eissn=1543-1851&rft.coden=JOMMER&rft_id=info:doi/10.1007/s11837-000-0032-1&rft_dat=%3Cproquest_cross%3E53917453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232554453&rft_id=info:pmid/&rfr_iscdi=true