Characterizing aluminum sintering using in-situ NDE
Considerable attention has been given to the use of nondestructive evaluation techniques to reduce the costs associated with the manufacture of powder-metallurgy components. One such technology that is being developed at the US Department of Energy's Ames Laboratory is an in situ noncontact tec...
Gespeichert in:
Veröffentlicht in: | JOM (1989) 2000-05, Vol.52 (5), p.38-39 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | 5 |
container_start_page | 38 |
container_title | JOM (1989) |
container_volume | 52 |
creator | Foley, James C. Rehbein, David K. |
description | Considerable attention has been given to the use of nondestructive evaluation techniques to reduce the costs associated with the manufacture of powder-metallurgy components. One such technology that is being developed at the US Department of Energy's Ames Laboratory is an in situ noncontact technique to characterize sintering. The method consists of a high-temperature electromagnetic acoustic transducer to measure the amplitude and velocity of an ultrasonic tone burst travelling through a sample during sintering. Results from the in situ noncontact nondestructive evaluation measurements indicate that real-time in situ monitoring of sintering is attainable. |
doi_str_mv | 10.1007/s11837-000-0032-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27218092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>53917453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-777cddf801c4e3aba067d7391828d85ead62c356d7a4d95cad2b1ea5366250313</originalsourceid><addsrcrecordid>eNpdkLtOAzEQRS0EEiHwAXQRBZ3B47HX3hKF8JAiaKC2HNsBR_sI9m4BX49XoaKYh66ORqNDyCWwG2BM3WYAjYoyxkohp3BEZiAFUtASjsvOhKJCoz4lZznvCqdEDTOCy0-brBtCij-x-1jYZmxjN7aLHLspLNGYpx47muMwLl7uV-fkZGubHC7-5py8P6zelk90_fr4vLxbU4cMBqqUct5vNQMnAtqNZZXyCmvQXHstg_UVdygrr6zwtXTW8w0EK7GquGQIOCfXh7v71H-NIQ-mjdmFprFd6MdsuOKgWc0LePUP3PVj6spvhiOXUgiJBYID5FKfcwpbs0-xtenbADOTQ3NwaIobMzk0gL-jt2LB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232554453</pqid></control><display><type>article</type><title>Characterizing aluminum sintering using in-situ NDE</title><source>SpringerNature Journals</source><creator>Foley, James C. ; Rehbein, David K.</creator><creatorcontrib>Foley, James C. ; Rehbein, David K.</creatorcontrib><description>Considerable attention has been given to the use of nondestructive evaluation techniques to reduce the costs associated with the manufacture of powder-metallurgy components. One such technology that is being developed at the US Department of Energy's Ames Laboratory is an in situ noncontact technique to characterize sintering. The method consists of a high-temperature electromagnetic acoustic transducer to measure the amplitude and velocity of an ultrasonic tone burst travelling through a sample during sintering. Results from the in situ noncontact nondestructive evaluation measurements indicate that real-time in situ monitoring of sintering is attainable.</description><identifier>ISSN: 1047-4838</identifier><identifier>EISSN: 1543-1851</identifier><identifier>DOI: 10.1007/s11837-000-0032-1</identifier><identifier>CODEN: JOMMER</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Acoustics ; Aluminum ; Laboratories ; Metallurgy ; Nondestructive testing ; Process controls ; Production capacity ; Sintering</subject><ispartof>JOM (1989), 2000-05, Vol.52 (5), p.38-39</ispartof><rights>Copyright Minerals, Metals & Materials Society May 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-777cddf801c4e3aba067d7391828d85ead62c356d7a4d95cad2b1ea5366250313</citedby><cites>FETCH-LOGICAL-c301t-777cddf801c4e3aba067d7391828d85ead62c356d7a4d95cad2b1ea5366250313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Foley, James C.</creatorcontrib><creatorcontrib>Rehbein, David K.</creatorcontrib><title>Characterizing aluminum sintering using in-situ NDE</title><title>JOM (1989)</title><description>Considerable attention has been given to the use of nondestructive evaluation techniques to reduce the costs associated with the manufacture of powder-metallurgy components. One such technology that is being developed at the US Department of Energy's Ames Laboratory is an in situ noncontact technique to characterize sintering. The method consists of a high-temperature electromagnetic acoustic transducer to measure the amplitude and velocity of an ultrasonic tone burst travelling through a sample during sintering. Results from the in situ noncontact nondestructive evaluation measurements indicate that real-time in situ monitoring of sintering is attainable.</description><subject>Acoustics</subject><subject>Aluminum</subject><subject>Laboratories</subject><subject>Metallurgy</subject><subject>Nondestructive testing</subject><subject>Process controls</subject><subject>Production capacity</subject><subject>Sintering</subject><issn>1047-4838</issn><issn>1543-1851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkLtOAzEQRS0EEiHwAXQRBZ3B47HX3hKF8JAiaKC2HNsBR_sI9m4BX49XoaKYh66ORqNDyCWwG2BM3WYAjYoyxkohp3BEZiAFUtASjsvOhKJCoz4lZznvCqdEDTOCy0-brBtCij-x-1jYZmxjN7aLHLspLNGYpx47muMwLl7uV-fkZGubHC7-5py8P6zelk90_fr4vLxbU4cMBqqUct5vNQMnAtqNZZXyCmvQXHstg_UVdygrr6zwtXTW8w0EK7GquGQIOCfXh7v71H-NIQ-mjdmFprFd6MdsuOKgWc0LePUP3PVj6spvhiOXUgiJBYID5FKfcwpbs0-xtenbADOTQ3NwaIobMzk0gL-jt2LB</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Foley, James C.</creator><creator>Rehbein, David K.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7TA</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QF</scope></search><sort><creationdate>20000501</creationdate><title>Characterizing aluminum sintering using in-situ NDE</title><author>Foley, James C. ; Rehbein, David K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-777cddf801c4e3aba067d7391828d85ead62c356d7a4d95cad2b1ea5366250313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Acoustics</topic><topic>Aluminum</topic><topic>Laboratories</topic><topic>Metallurgy</topic><topic>Nondestructive testing</topic><topic>Process controls</topic><topic>Production capacity</topic><topic>Sintering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foley, James C.</creatorcontrib><creatorcontrib>Rehbein, David K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aluminium Industry Abstracts</collection><jtitle>JOM (1989)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foley, James C.</au><au>Rehbein, David K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing aluminum sintering using in-situ NDE</atitle><jtitle>JOM (1989)</jtitle><date>2000-05-01</date><risdate>2000</risdate><volume>52</volume><issue>5</issue><spage>38</spage><epage>39</epage><pages>38-39</pages><issn>1047-4838</issn><eissn>1543-1851</eissn><coden>JOMMER</coden><abstract>Considerable attention has been given to the use of nondestructive evaluation techniques to reduce the costs associated with the manufacture of powder-metallurgy components. One such technology that is being developed at the US Department of Energy's Ames Laboratory is an in situ noncontact technique to characterize sintering. The method consists of a high-temperature electromagnetic acoustic transducer to measure the amplitude and velocity of an ultrasonic tone burst travelling through a sample during sintering. Results from the in situ noncontact nondestructive evaluation measurements indicate that real-time in situ monitoring of sintering is attainable.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11837-000-0032-1</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-4838 |
ispartof | JOM (1989), 2000-05, Vol.52 (5), p.38-39 |
issn | 1047-4838 1543-1851 |
language | eng |
recordid | cdi_proquest_miscellaneous_27218092 |
source | SpringerNature Journals |
subjects | Acoustics Aluminum Laboratories Metallurgy Nondestructive testing Process controls Production capacity Sintering |
title | Characterizing aluminum sintering using in-situ NDE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20aluminum%20sintering%20using%20in-situ%20NDE&rft.jtitle=JOM%20(1989)&rft.au=Foley,%20James%20C.&rft.date=2000-05-01&rft.volume=52&rft.issue=5&rft.spage=38&rft.epage=39&rft.pages=38-39&rft.issn=1047-4838&rft.eissn=1543-1851&rft.coden=JOMMER&rft_id=info:doi/10.1007/s11837-000-0032-1&rft_dat=%3Cproquest_cross%3E53917453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232554453&rft_id=info:pmid/&rfr_iscdi=true |