Ultralean Electrolyte Li‑S Battery by Avoiding Gelation Catastrophe
Due to the poor electronic conductivity of solid sulfur and sulfides, the dissolution of Sα– (α = 0, 2/8, 2/6, 2/4) into a liquid electrolyte and the vehicular diffusion of Sα– to carbon black are necessary for the electrochemical activity of a sulfur cathode in lithium-sulfur (Li-S) batteries. Howe...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-10, Vol.14 (41), p.46457-46470 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46470 |
---|---|
container_issue | 41 |
container_start_page | 46457 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Wang, Li Xie, Yong Qi, Xiaoqun Jiang, Ruining Huang, Kai Qie, Long Li, Sa |
description | Due to the poor electronic conductivity of solid sulfur and sulfides, the dissolution of Sα– (α = 0, 2/8, 2/6, 2/4) into a liquid electrolyte and the vehicular diffusion of Sα– to carbon black are necessary for the electrochemical activity of a sulfur cathode in lithium-sulfur (Li-S) batteries. However, exactly how much dissolution and diffusion are required for high sulfur utilization and how this may control the minimum electrolyte/sulfur ratio, (E/S)min, have not been quantitatively settled. In this work, we show experimentally that a dissolved polysulfide concentration which is too high (>10–20 MS) may gel the liquid electrolyte, leading to catastrophic loss of Sα– mobility, a failure mode that is especially susceptible in a high-donor-number (DN) electrolyte under a lean condition (low E/S), similar to a traffic jam, resulting in high electrochemical polarization and low sulfur utilization. In contrast, we show that a low-DN electrolyte, even with a low polysulfide solubility of 0.1–0.5 MS, will never encounter a gelation catastrophe even at extremely low E/S, leading to unprecedentedly high energy density. Specifically, high sulfur utilizations of 96% (1600 mAh g–1) and 78% (1300 mAh g–1) are reached in an electrolyte as lean as E/S = 2 and 1 μL mg–1 Li-S coin cells when DME1.6LiFSI-HFE of low solvation capability (DN = 13.9) is adopted, even paired against a high-sulfur-loading cathode (5 mg cm–2). |
doi_str_mv | 10.1021/acsami.2c10906 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2721262702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721262702</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-109185eb332a63e3d8f3688bd90602e30a2131b1d61c46512bb98e34d299d27b3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqWwMmdESCn2OXGSsVRtQarEAJ0tO7mCKzcptouUjb_AX-SXYJSKjelOp--d3nuEXDM6YRTYnaq92pkJ1IxWVJyQEauyLC0hh9O_PcvOyYX3W0oFB5qPyHxtg1MWVZvMLdbBdbYPmKzM9-fXc3KvQkDXJ7pPph-daUz7mizRqmC6NpmpoHwU7N_wkpxtlPV4dZxjsl7MX2YP6epp-TibrlLFaRHSaIyVOWrOQQmOvCk3XJSlbqJfCsipAsaZZo1gdSZyBlpXJfKsgapqoNB8TG6Gv3vXvR_QB7kzvkZrVYvdwUsogIGAgkJEJwNau857hxu5d2anXC8Zlb99yaEveewrCm4HQbzLbXdwbUzyH_wDAp5ssA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721262702</pqid></control><display><type>article</type><title>Ultralean Electrolyte Li‑S Battery by Avoiding Gelation Catastrophe</title><source>American Chemical Society Journals</source><creator>Wang, Li ; Xie, Yong ; Qi, Xiaoqun ; Jiang, Ruining ; Huang, Kai ; Qie, Long ; Li, Sa</creator><creatorcontrib>Wang, Li ; Xie, Yong ; Qi, Xiaoqun ; Jiang, Ruining ; Huang, Kai ; Qie, Long ; Li, Sa</creatorcontrib><description>Due to the poor electronic conductivity of solid sulfur and sulfides, the dissolution of Sα– (α = 0, 2/8, 2/6, 2/4) into a liquid electrolyte and the vehicular diffusion of Sα– to carbon black are necessary for the electrochemical activity of a sulfur cathode in lithium-sulfur (Li-S) batteries. However, exactly how much dissolution and diffusion are required for high sulfur utilization and how this may control the minimum electrolyte/sulfur ratio, (E/S)min, have not been quantitatively settled. In this work, we show experimentally that a dissolved polysulfide concentration which is too high (>10–20 MS) may gel the liquid electrolyte, leading to catastrophic loss of Sα– mobility, a failure mode that is especially susceptible in a high-donor-number (DN) electrolyte under a lean condition (low E/S), similar to a traffic jam, resulting in high electrochemical polarization and low sulfur utilization. In contrast, we show that a low-DN electrolyte, even with a low polysulfide solubility of 0.1–0.5 MS, will never encounter a gelation catastrophe even at extremely low E/S, leading to unprecedentedly high energy density. Specifically, high sulfur utilizations of 96% (1600 mAh g–1) and 78% (1300 mAh g–1) are reached in an electrolyte as lean as E/S = 2 and 1 μL mg–1 Li-S coin cells when DME1.6LiFSI-HFE of low solvation capability (DN = 13.9) is adopted, even paired against a high-sulfur-loading cathode (5 mg cm–2).</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c10906</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2022-10, Vol.14 (41), p.46457-46470</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-109185eb332a63e3d8f3688bd90602e30a2131b1d61c46512bb98e34d299d27b3</citedby><cites>FETCH-LOGICAL-a307t-109185eb332a63e3d8f3688bd90602e30a2131b1d61c46512bb98e34d299d27b3</cites><orcidid>0000-0002-2487-5368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c10906$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c10906$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Xie, Yong</creatorcontrib><creatorcontrib>Qi, Xiaoqun</creatorcontrib><creatorcontrib>Jiang, Ruining</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Qie, Long</creatorcontrib><creatorcontrib>Li, Sa</creatorcontrib><title>Ultralean Electrolyte Li‑S Battery by Avoiding Gelation Catastrophe</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Due to the poor electronic conductivity of solid sulfur and sulfides, the dissolution of Sα– (α = 0, 2/8, 2/6, 2/4) into a liquid electrolyte and the vehicular diffusion of Sα– to carbon black are necessary for the electrochemical activity of a sulfur cathode in lithium-sulfur (Li-S) batteries. However, exactly how much dissolution and diffusion are required for high sulfur utilization and how this may control the minimum electrolyte/sulfur ratio, (E/S)min, have not been quantitatively settled. In this work, we show experimentally that a dissolved polysulfide concentration which is too high (>10–20 MS) may gel the liquid electrolyte, leading to catastrophic loss of Sα– mobility, a failure mode that is especially susceptible in a high-donor-number (DN) electrolyte under a lean condition (low E/S), similar to a traffic jam, resulting in high electrochemical polarization and low sulfur utilization. In contrast, we show that a low-DN electrolyte, even with a low polysulfide solubility of 0.1–0.5 MS, will never encounter a gelation catastrophe even at extremely low E/S, leading to unprecedentedly high energy density. Specifically, high sulfur utilizations of 96% (1600 mAh g–1) and 78% (1300 mAh g–1) are reached in an electrolyte as lean as E/S = 2 and 1 μL mg–1 Li-S coin cells when DME1.6LiFSI-HFE of low solvation capability (DN = 13.9) is adopted, even paired against a high-sulfur-loading cathode (5 mg cm–2).</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqWwMmdESCn2OXGSsVRtQarEAJ0tO7mCKzcptouUjb_AX-SXYJSKjelOp--d3nuEXDM6YRTYnaq92pkJ1IxWVJyQEauyLC0hh9O_PcvOyYX3W0oFB5qPyHxtg1MWVZvMLdbBdbYPmKzM9-fXc3KvQkDXJ7pPph-daUz7mizRqmC6NpmpoHwU7N_wkpxtlPV4dZxjsl7MX2YP6epp-TibrlLFaRHSaIyVOWrOQQmOvCk3XJSlbqJfCsipAsaZZo1gdSZyBlpXJfKsgapqoNB8TG6Gv3vXvR_QB7kzvkZrVYvdwUsogIGAgkJEJwNau857hxu5d2anXC8Zlb99yaEveewrCm4HQbzLbXdwbUzyH_wDAp5ssA</recordid><startdate>20221019</startdate><enddate>20221019</enddate><creator>Wang, Li</creator><creator>Xie, Yong</creator><creator>Qi, Xiaoqun</creator><creator>Jiang, Ruining</creator><creator>Huang, Kai</creator><creator>Qie, Long</creator><creator>Li, Sa</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2487-5368</orcidid></search><sort><creationdate>20221019</creationdate><title>Ultralean Electrolyte Li‑S Battery by Avoiding Gelation Catastrophe</title><author>Wang, Li ; Xie, Yong ; Qi, Xiaoqun ; Jiang, Ruining ; Huang, Kai ; Qie, Long ; Li, Sa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-109185eb332a63e3d8f3688bd90602e30a2131b1d61c46512bb98e34d299d27b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Xie, Yong</creatorcontrib><creatorcontrib>Qi, Xiaoqun</creatorcontrib><creatorcontrib>Jiang, Ruining</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Qie, Long</creatorcontrib><creatorcontrib>Li, Sa</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Li</au><au>Xie, Yong</au><au>Qi, Xiaoqun</au><au>Jiang, Ruining</au><au>Huang, Kai</au><au>Qie, Long</au><au>Li, Sa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralean Electrolyte Li‑S Battery by Avoiding Gelation Catastrophe</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-10-19</date><risdate>2022</risdate><volume>14</volume><issue>41</issue><spage>46457</spage><epage>46470</epage><pages>46457-46470</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Due to the poor electronic conductivity of solid sulfur and sulfides, the dissolution of Sα– (α = 0, 2/8, 2/6, 2/4) into a liquid electrolyte and the vehicular diffusion of Sα– to carbon black are necessary for the electrochemical activity of a sulfur cathode in lithium-sulfur (Li-S) batteries. However, exactly how much dissolution and diffusion are required for high sulfur utilization and how this may control the minimum electrolyte/sulfur ratio, (E/S)min, have not been quantitatively settled. In this work, we show experimentally that a dissolved polysulfide concentration which is too high (>10–20 MS) may gel the liquid electrolyte, leading to catastrophic loss of Sα– mobility, a failure mode that is especially susceptible in a high-donor-number (DN) electrolyte under a lean condition (low E/S), similar to a traffic jam, resulting in high electrochemical polarization and low sulfur utilization. In contrast, we show that a low-DN electrolyte, even with a low polysulfide solubility of 0.1–0.5 MS, will never encounter a gelation catastrophe even at extremely low E/S, leading to unprecedentedly high energy density. Specifically, high sulfur utilizations of 96% (1600 mAh g–1) and 78% (1300 mAh g–1) are reached in an electrolyte as lean as E/S = 2 and 1 μL mg–1 Li-S coin cells when DME1.6LiFSI-HFE of low solvation capability (DN = 13.9) is adopted, even paired against a high-sulfur-loading cathode (5 mg cm–2).</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c10906</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2487-5368</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-10, Vol.14 (41), p.46457-46470 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2721262702 |
source | American Chemical Society Journals |
subjects | Energy, Environmental, and Catalysis Applications |
title | Ultralean Electrolyte Li‑S Battery by Avoiding Gelation Catastrophe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralean%20Electrolyte%20Li%E2%80%91S%20Battery%20by%20Avoiding%20Gelation%20Catastrophe&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Li&rft.date=2022-10-19&rft.volume=14&rft.issue=41&rft.spage=46457&rft.epage=46470&rft.pages=46457-46470&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c10906&rft_dat=%3Cproquest_cross%3E2721262702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721262702&rft_id=info:pmid/&rfr_iscdi=true |