Ultralean Electrolyte Li‑S Battery by Avoiding Gelation Catastrophe

Due to the poor electronic conductivity of solid sulfur and sulfides, the dissolution of Sα– (α = 0, 2/8, 2/6, 2/4) into a liquid electrolyte and the vehicular diffusion of Sα– to carbon black are necessary for the electrochemical activity of a sulfur cathode in lithium-sulfur (Li-S) batteries. Howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-10, Vol.14 (41), p.46457-46470
Hauptverfasser: Wang, Li, Xie, Yong, Qi, Xiaoqun, Jiang, Ruining, Huang, Kai, Qie, Long, Li, Sa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46470
container_issue 41
container_start_page 46457
container_title ACS applied materials & interfaces
container_volume 14
creator Wang, Li
Xie, Yong
Qi, Xiaoqun
Jiang, Ruining
Huang, Kai
Qie, Long
Li, Sa
description Due to the poor electronic conductivity of solid sulfur and sulfides, the dissolution of Sα– (α = 0, 2/8, 2/6, 2/4) into a liquid electrolyte and the vehicular diffusion of Sα– to carbon black are necessary for the electrochemical activity of a sulfur cathode in lithium-sulfur (Li-S) batteries. However, exactly how much dissolution and diffusion are required for high sulfur utilization and how this may control the minimum electrolyte/sulfur ratio, (E/S)min, have not been quantitatively settled. In this work, we show experimentally that a dissolved polysulfide concentration which is too high (>10–20 MS) may gel the liquid electrolyte, leading to catastrophic loss of Sα– mobility, a failure mode that is especially susceptible in a high-donor-number (DN) electrolyte under a lean condition (low E/S), similar to a traffic jam, resulting in high electrochemical polarization and low sulfur utilization. In contrast, we show that a low-DN electrolyte, even with a low polysulfide solubility of 0.1–0.5 MS, will never encounter a gelation catastrophe even at extremely low E/S, leading to unprecedentedly high energy density. Specifically, high sulfur utilizations of 96% (1600 mAh g–1) and 78% (1300 mAh g–1) are reached in an electrolyte as lean as E/S = 2 and 1 μL mg–1 Li-S coin cells when DME1.6LiFSI-HFE of low solvation capability (DN = 13.9) is adopted, even paired against a high-sulfur-loading cathode (5 mg cm–2).
doi_str_mv 10.1021/acsami.2c10906
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2721262702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2721262702</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-109185eb332a63e3d8f3688bd90602e30a2131b1d61c46512bb98e34d299d27b3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqWwMmdESCn2OXGSsVRtQarEAJ0tO7mCKzcptouUjb_AX-SXYJSKjelOp--d3nuEXDM6YRTYnaq92pkJ1IxWVJyQEauyLC0hh9O_PcvOyYX3W0oFB5qPyHxtg1MWVZvMLdbBdbYPmKzM9-fXc3KvQkDXJ7pPph-daUz7mizRqmC6NpmpoHwU7N_wkpxtlPV4dZxjsl7MX2YP6epp-TibrlLFaRHSaIyVOWrOQQmOvCk3XJSlbqJfCsipAsaZZo1gdSZyBlpXJfKsgapqoNB8TG6Gv3vXvR_QB7kzvkZrVYvdwUsogIGAgkJEJwNau857hxu5d2anXC8Zlb99yaEveewrCm4HQbzLbXdwbUzyH_wDAp5ssA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2721262702</pqid></control><display><type>article</type><title>Ultralean Electrolyte Li‑S Battery by Avoiding Gelation Catastrophe</title><source>American Chemical Society Journals</source><creator>Wang, Li ; Xie, Yong ; Qi, Xiaoqun ; Jiang, Ruining ; Huang, Kai ; Qie, Long ; Li, Sa</creator><creatorcontrib>Wang, Li ; Xie, Yong ; Qi, Xiaoqun ; Jiang, Ruining ; Huang, Kai ; Qie, Long ; Li, Sa</creatorcontrib><description>Due to the poor electronic conductivity of solid sulfur and sulfides, the dissolution of Sα– (α = 0, 2/8, 2/6, 2/4) into a liquid electrolyte and the vehicular diffusion of Sα– to carbon black are necessary for the electrochemical activity of a sulfur cathode in lithium-sulfur (Li-S) batteries. However, exactly how much dissolution and diffusion are required for high sulfur utilization and how this may control the minimum electrolyte/sulfur ratio, (E/S)min, have not been quantitatively settled. In this work, we show experimentally that a dissolved polysulfide concentration which is too high (&gt;10–20 MS) may gel the liquid electrolyte, leading to catastrophic loss of Sα– mobility, a failure mode that is especially susceptible in a high-donor-number (DN) electrolyte under a lean condition (low E/S), similar to a traffic jam, resulting in high electrochemical polarization and low sulfur utilization. In contrast, we show that a low-DN electrolyte, even with a low polysulfide solubility of 0.1–0.5 MS, will never encounter a gelation catastrophe even at extremely low E/S, leading to unprecedentedly high energy density. Specifically, high sulfur utilizations of 96% (1600 mAh g–1) and 78% (1300 mAh g–1) are reached in an electrolyte as lean as E/S = 2 and 1 μL mg–1 Li-S coin cells when DME1.6LiFSI-HFE of low solvation capability (DN = 13.9) is adopted, even paired against a high-sulfur-loading cathode (5 mg cm–2).</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c10906</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-10, Vol.14 (41), p.46457-46470</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-109185eb332a63e3d8f3688bd90602e30a2131b1d61c46512bb98e34d299d27b3</citedby><cites>FETCH-LOGICAL-a307t-109185eb332a63e3d8f3688bd90602e30a2131b1d61c46512bb98e34d299d27b3</cites><orcidid>0000-0002-2487-5368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c10906$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c10906$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Xie, Yong</creatorcontrib><creatorcontrib>Qi, Xiaoqun</creatorcontrib><creatorcontrib>Jiang, Ruining</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Qie, Long</creatorcontrib><creatorcontrib>Li, Sa</creatorcontrib><title>Ultralean Electrolyte Li‑S Battery by Avoiding Gelation Catastrophe</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Due to the poor electronic conductivity of solid sulfur and sulfides, the dissolution of Sα– (α = 0, 2/8, 2/6, 2/4) into a liquid electrolyte and the vehicular diffusion of Sα– to carbon black are necessary for the electrochemical activity of a sulfur cathode in lithium-sulfur (Li-S) batteries. However, exactly how much dissolution and diffusion are required for high sulfur utilization and how this may control the minimum electrolyte/sulfur ratio, (E/S)min, have not been quantitatively settled. In this work, we show experimentally that a dissolved polysulfide concentration which is too high (&gt;10–20 MS) may gel the liquid electrolyte, leading to catastrophic loss of Sα– mobility, a failure mode that is especially susceptible in a high-donor-number (DN) electrolyte under a lean condition (low E/S), similar to a traffic jam, resulting in high electrochemical polarization and low sulfur utilization. In contrast, we show that a low-DN electrolyte, even with a low polysulfide solubility of 0.1–0.5 MS, will never encounter a gelation catastrophe even at extremely low E/S, leading to unprecedentedly high energy density. Specifically, high sulfur utilizations of 96% (1600 mAh g–1) and 78% (1300 mAh g–1) are reached in an electrolyte as lean as E/S = 2 and 1 μL mg–1 Li-S coin cells when DME1.6LiFSI-HFE of low solvation capability (DN = 13.9) is adopted, even paired against a high-sulfur-loading cathode (5 mg cm–2).</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqWwMmdESCn2OXGSsVRtQarEAJ0tO7mCKzcptouUjb_AX-SXYJSKjelOp--d3nuEXDM6YRTYnaq92pkJ1IxWVJyQEauyLC0hh9O_PcvOyYX3W0oFB5qPyHxtg1MWVZvMLdbBdbYPmKzM9-fXc3KvQkDXJ7pPph-daUz7mizRqmC6NpmpoHwU7N_wkpxtlPV4dZxjsl7MX2YP6epp-TibrlLFaRHSaIyVOWrOQQmOvCk3XJSlbqJfCsipAsaZZo1gdSZyBlpXJfKsgapqoNB8TG6Gv3vXvR_QB7kzvkZrVYvdwUsogIGAgkJEJwNau857hxu5d2anXC8Zlb99yaEveewrCm4HQbzLbXdwbUzyH_wDAp5ssA</recordid><startdate>20221019</startdate><enddate>20221019</enddate><creator>Wang, Li</creator><creator>Xie, Yong</creator><creator>Qi, Xiaoqun</creator><creator>Jiang, Ruining</creator><creator>Huang, Kai</creator><creator>Qie, Long</creator><creator>Li, Sa</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2487-5368</orcidid></search><sort><creationdate>20221019</creationdate><title>Ultralean Electrolyte Li‑S Battery by Avoiding Gelation Catastrophe</title><author>Wang, Li ; Xie, Yong ; Qi, Xiaoqun ; Jiang, Ruining ; Huang, Kai ; Qie, Long ; Li, Sa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-109185eb332a63e3d8f3688bd90602e30a2131b1d61c46512bb98e34d299d27b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Xie, Yong</creatorcontrib><creatorcontrib>Qi, Xiaoqun</creatorcontrib><creatorcontrib>Jiang, Ruining</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Qie, Long</creatorcontrib><creatorcontrib>Li, Sa</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Li</au><au>Xie, Yong</au><au>Qi, Xiaoqun</au><au>Jiang, Ruining</au><au>Huang, Kai</au><au>Qie, Long</au><au>Li, Sa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultralean Electrolyte Li‑S Battery by Avoiding Gelation Catastrophe</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-10-19</date><risdate>2022</risdate><volume>14</volume><issue>41</issue><spage>46457</spage><epage>46470</epage><pages>46457-46470</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Due to the poor electronic conductivity of solid sulfur and sulfides, the dissolution of Sα– (α = 0, 2/8, 2/6, 2/4) into a liquid electrolyte and the vehicular diffusion of Sα– to carbon black are necessary for the electrochemical activity of a sulfur cathode in lithium-sulfur (Li-S) batteries. However, exactly how much dissolution and diffusion are required for high sulfur utilization and how this may control the minimum electrolyte/sulfur ratio, (E/S)min, have not been quantitatively settled. In this work, we show experimentally that a dissolved polysulfide concentration which is too high (&gt;10–20 MS) may gel the liquid electrolyte, leading to catastrophic loss of Sα– mobility, a failure mode that is especially susceptible in a high-donor-number (DN) electrolyte under a lean condition (low E/S), similar to a traffic jam, resulting in high electrochemical polarization and low sulfur utilization. In contrast, we show that a low-DN electrolyte, even with a low polysulfide solubility of 0.1–0.5 MS, will never encounter a gelation catastrophe even at extremely low E/S, leading to unprecedentedly high energy density. Specifically, high sulfur utilizations of 96% (1600 mAh g–1) and 78% (1300 mAh g–1) are reached in an electrolyte as lean as E/S = 2 and 1 μL mg–1 Li-S coin cells when DME1.6LiFSI-HFE of low solvation capability (DN = 13.9) is adopted, even paired against a high-sulfur-loading cathode (5 mg cm–2).</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c10906</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2487-5368</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-10, Vol.14 (41), p.46457-46470
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2721262702
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title Ultralean Electrolyte Li‑S Battery by Avoiding Gelation Catastrophe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultralean%20Electrolyte%20Li%E2%80%91S%20Battery%20by%20Avoiding%20Gelation%20Catastrophe&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Li&rft.date=2022-10-19&rft.volume=14&rft.issue=41&rft.spage=46457&rft.epage=46470&rft.pages=46457-46470&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c10906&rft_dat=%3Cproquest_cross%3E2721262702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2721262702&rft_id=info:pmid/&rfr_iscdi=true